| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem8 | Structured version Visualization version Unicode version | ||
| Description: Lemma for stoweid 40280: two class variables replace two setvar variables, for the sum of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| stoweidlem8.1 |
|
| stoweidlem8.2 |
|
| stoweidlem8.3 |
|
| Ref | Expression |
|---|---|
| stoweidlem8 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1063 |
. 2
| |
| 2 | eleq1 2689 |
. . . . 5
| |
| 3 | 2 | 3anbi3d 1405 |
. . . 4
|
| 4 | stoweidlem8.3 |
. . . . . . 7
| |
| 5 | 4 | nfeq2 2780 |
. . . . . 6
|
| 6 | fveq1 6190 |
. . . . . . . 8
| |
| 7 | 6 | oveq2d 6666 |
. . . . . . 7
|
| 8 | 7 | adantr 481 |
. . . . . 6
|
| 9 | 5, 8 | mpteq2da 4743 |
. . . . 5
|
| 10 | 9 | eleq1d 2686 |
. . . 4
|
| 11 | 3, 10 | imbi12d 334 |
. . 3
|
| 12 | simp2 1062 |
. . . 4
| |
| 13 | eleq1 2689 |
. . . . . . 7
| |
| 14 | 13 | 3anbi2d 1404 |
. . . . . 6
|
| 15 | stoweidlem8.2 |
. . . . . . . . 9
| |
| 16 | 15 | nfeq2 2780 |
. . . . . . . 8
|
| 17 | fveq1 6190 |
. . . . . . . . . 10
| |
| 18 | 17 | oveq1d 6665 |
. . . . . . . . 9
|
| 19 | 18 | adantr 481 |
. . . . . . . 8
|
| 20 | 16, 19 | mpteq2da 4743 |
. . . . . . 7
|
| 21 | 20 | eleq1d 2686 |
. . . . . 6
|
| 22 | 14, 21 | imbi12d 334 |
. . . . 5
|
| 23 | stoweidlem8.1 |
. . . . 5
| |
| 24 | 22, 23 | vtoclg 3266 |
. . . 4
|
| 25 | 12, 24 | mpcom 38 |
. . 3
|
| 26 | 11, 25 | vtoclg 3266 |
. 2
|
| 27 | 1, 26 | mpcom 38 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: stoweidlem20 40237 stoweidlem21 40238 stoweidlem22 40239 stoweidlem23 40240 |
| Copyright terms: Public domain | W3C validator |