Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem8 Structured version   Visualization version   Unicode version

Theorem stoweidlem8 40225
Description: Lemma for stoweid 40280: two class variables replace two setvar variables, for the sum of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem8.1  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem8.2  |-  F/_ t F
stoweidlem8.3  |-  F/_ t G
Assertion
Ref Expression
stoweidlem8  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  +  ( G `  t ) ) )  e.  A )
Distinct variable groups:    f, g,
t    A, f, g    f, F, g    T, f, g    ph, f, g    g, G
Allowed substitution hints:    ph( t)    A( t)    T( t)    F( t)    G( t, f)

Proof of Theorem stoweidlem8
StepHypRef Expression
1 simp3 1063 . 2  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  G  e.  A )
2 eleq1 2689 . . . . 5  |-  ( g  =  G  ->  (
g  e.  A  <->  G  e.  A ) )
323anbi3d 1405 . . . 4  |-  ( g  =  G  ->  (
( ph  /\  F  e.  A  /\  g  e.  A )  <->  ( ph  /\  F  e.  A  /\  G  e.  A )
) )
4 stoweidlem8.3 . . . . . . 7  |-  F/_ t G
54nfeq2 2780 . . . . . 6  |-  F/ t  g  =  G
6 fveq1 6190 . . . . . . . 8  |-  ( g  =  G  ->  (
g `  t )  =  ( G `  t ) )
76oveq2d 6666 . . . . . . 7  |-  ( g  =  G  ->  (
( F `  t
)  +  ( g `
 t ) )  =  ( ( F `
 t )  +  ( G `  t
) ) )
87adantr 481 . . . . . 6  |-  ( ( g  =  G  /\  t  e.  T )  ->  ( ( F `  t )  +  ( g `  t ) )  =  ( ( F `  t )  +  ( G `  t ) ) )
95, 8mpteq2da 4743 . . . . 5  |-  ( g  =  G  ->  (
t  e.  T  |->  ( ( F `  t
)  +  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( F `  t )  +  ( G `  t ) ) ) )
109eleq1d 2686 . . . 4  |-  ( g  =  G  ->  (
( t  e.  T  |->  ( ( F `  t )  +  ( g `  t ) ) )  e.  A  <->  ( t  e.  T  |->  ( ( F `  t
)  +  ( G `
 t ) ) )  e.  A ) )
113, 10imbi12d 334 . . 3  |-  ( g  =  G  ->  (
( ( ph  /\  F  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  +  ( g `  t ) ) )  e.  A
)  <->  ( ( ph  /\  F  e.  A  /\  G  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  +  ( G `  t ) ) )  e.  A
) ) )
12 simp2 1062 . . . 4  |-  ( (
ph  /\  F  e.  A  /\  g  e.  A
)  ->  F  e.  A )
13 eleq1 2689 . . . . . . 7  |-  ( f  =  F  ->  (
f  e.  A  <->  F  e.  A ) )
14133anbi2d 1404 . . . . . 6  |-  ( f  =  F  ->  (
( ph  /\  f  e.  A  /\  g  e.  A )  <->  ( ph  /\  F  e.  A  /\  g  e.  A )
) )
15 stoweidlem8.2 . . . . . . . . 9  |-  F/_ t F
1615nfeq2 2780 . . . . . . . 8  |-  F/ t  f  =  F
17 fveq1 6190 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  t )  =  ( F `  t ) )
1817oveq1d 6665 . . . . . . . . 9  |-  ( f  =  F  ->  (
( f `  t
)  +  ( g `
 t ) )  =  ( ( F `
 t )  +  ( g `  t
) ) )
1918adantr 481 . . . . . . . 8  |-  ( ( f  =  F  /\  t  e.  T )  ->  ( ( f `  t )  +  ( g `  t ) )  =  ( ( F `  t )  +  ( g `  t ) ) )
2016, 19mpteq2da 4743 . . . . . . 7  |-  ( f  =  F  ->  (
t  e.  T  |->  ( ( f `  t
)  +  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( F `  t )  +  ( g `  t ) ) ) )
2120eleq1d 2686 . . . . . 6  |-  ( f  =  F  ->  (
( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A  <->  ( t  e.  T  |->  ( ( F `  t
)  +  ( g `
 t ) ) )  e.  A ) )
2214, 21imbi12d 334 . . . . 5  |-  ( f  =  F  ->  (
( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A
)  <->  ( ( ph  /\  F  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  +  ( g `  t ) ) )  e.  A
) ) )
23 stoweidlem8.1 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
2422, 23vtoclg 3266 . . . 4  |-  ( F  e.  A  ->  (
( ph  /\  F  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( F `  t
)  +  ( g `
 t ) ) )  e.  A ) )
2512, 24mpcom 38 . . 3  |-  ( (
ph  /\  F  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  +  ( g `  t ) ) )  e.  A )
2611, 25vtoclg 3266 . 2  |-  ( G  e.  A  ->  (
( ph  /\  F  e.  A  /\  G  e.  A )  ->  (
t  e.  T  |->  ( ( F `  t
)  +  ( G `
 t ) ) )  e.  A ) )
271, 26mpcom 38 1  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  +  ( G `  t ) ) )  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   F/_wnfc 2751    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    + caddc 9939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  stoweidlem20  40237  stoweidlem21  40238  stoweidlem22  40239  stoweidlem23  40240
  Copyright terms: Public domain W3C validator