MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strss Structured version   Visualization version   Unicode version

Theorem strss 15910
Description: Propagate component extraction to a structure  T from a subset structure  S. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 15-Jan-2014.)
Hypotheses
Ref Expression
strss.t  |-  T  e. 
_V
strss.f  |-  Fun  T
strss.s  |-  S  C_  T
strss.e  |-  E  = Slot  ( E `  ndx )
strss.n  |-  <. ( E `  ndx ) ,  C >.  e.  S
Assertion
Ref Expression
strss  |-  ( E `
 T )  =  ( E `  S
)

Proof of Theorem strss
StepHypRef Expression
1 strss.e . . 3  |-  E  = Slot  ( E `  ndx )
2 strss.t . . . 4  |-  T  e. 
_V
32a1i 11 . . 3  |-  ( T. 
->  T  e.  _V )
4 strss.f . . . 4  |-  Fun  T
54a1i 11 . . 3  |-  ( T. 
->  Fun  T )
6 strss.s . . . 4  |-  S  C_  T
76a1i 11 . . 3  |-  ( T. 
->  S  C_  T )
8 strss.n . . . 4  |-  <. ( E `  ndx ) ,  C >.  e.  S
98a1i 11 . . 3  |-  ( T. 
->  <. ( E `  ndx ) ,  C >.  e.  S )
101, 3, 5, 7, 9strssd 15909 . 2  |-  ( T. 
->  ( E `  T
)  =  ( E `
 S ) )
1110trud 1493 1  |-  ( E `
 T )  =  ( E `  S
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483   T. wtru 1484    e. wcel 1990   _Vcvv 3200    C_ wss 3574   <.cop 4183   Fun wfun 5882   ` cfv 5888   ndxcnx 15854  Slot cslot 15856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-slot 15861
This theorem is referenced by:  grpss  17440
  Copyright terms: Public domain W3C validator