MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submafval Structured version   Visualization version   Unicode version

Theorem submafval 20385
Description: First substitution for a submatrix. (Contributed by AV, 28-Dec-2018.)
Hypotheses
Ref Expression
submafval.a  |-  A  =  ( N Mat  R )
submafval.q  |-  Q  =  ( N subMat  R )
submafval.b  |-  B  =  ( Base `  A
)
Assertion
Ref Expression
submafval  |-  Q  =  ( m  e.  B  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  ( N  \  { k } ) ,  j  e.  ( N  \  { l } ) 
|->  ( i m j ) ) ) )
Distinct variable groups:    B, m    i, N, j, k, l, m    R, i, j, k, l, m
Allowed substitution hints:    A( i, j, k, m, l)    B( i, j, k, l)    Q( i, j, k, m, l)

Proof of Theorem submafval
Dummy variables  n  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submafval.q . 2  |-  Q  =  ( N subMat  R )
2 oveq12 6659 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n Mat  r )  =  ( N Mat  R
) )
3 submafval.a . . . . . . . 8  |-  A  =  ( N Mat  R )
42, 3syl6eqr 2674 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n Mat  r )  =  A )
54fveq2d 6195 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  (
n Mat  r ) )  =  ( Base `  A
) )
6 submafval.b . . . . . 6  |-  B  =  ( Base `  A
)
75, 6syl6eqr 2674 . . . . 5  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  (
n Mat  r ) )  =  B )
8 simpl 473 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  n  =  N )
9 difeq1 3721 . . . . . . . 8  |-  ( n  =  N  ->  (
n  \  { k } )  =  ( N  \  { k } ) )
109adantr 481 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n  \  {
k } )  =  ( N  \  {
k } ) )
11 difeq1 3721 . . . . . . . 8  |-  ( n  =  N  ->  (
n  \  { l } )  =  ( N  \  { l } ) )
1211adantr 481 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n  \  {
l } )  =  ( N  \  {
l } ) )
13 eqidd 2623 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( i m j )  =  ( i m j ) )
1410, 12, 13mpt2eq123dv 6717 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( i  e.  ( n  \  { k } ) ,  j  e.  ( n  \  { l } ) 
|->  ( i m j ) )  =  ( i  e.  ( N 
\  { k } ) ,  j  e.  ( N  \  {
l } )  |->  ( i m j ) ) )
158, 8, 14mpt2eq123dv 6717 . . . . 5  |-  ( ( n  =  N  /\  r  =  R )  ->  ( k  e.  n ,  l  e.  n  |->  ( i  e.  ( n  \  { k } ) ,  j  e.  ( n  \  { l } ) 
|->  ( i m j ) ) )  =  ( k  e.  N ,  l  e.  N  |->  ( i  e.  ( N  \  { k } ) ,  j  e.  ( N  \  { l } ) 
|->  ( i m j ) ) ) )
167, 15mpteq12dv 4733 . . . 4  |-  ( ( n  =  N  /\  r  =  R )  ->  ( m  e.  (
Base `  ( n Mat  r ) )  |->  ( k  e.  n ,  l  e.  n  |->  ( i  e.  ( n 
\  { k } ) ,  j  e.  ( n  \  {
l } )  |->  ( i m j ) ) ) )  =  ( m  e.  B  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  ( N  \  { k } ) ,  j  e.  ( N  \  { l } ) 
|->  ( i m j ) ) ) ) )
17 df-subma 20383 . . . 4  |- subMat  =  ( n  e.  _V , 
r  e.  _V  |->  ( m  e.  ( Base `  ( n Mat  r ) )  |->  ( k  e.  n ,  l  e.  n  |->  ( i  e.  ( n  \  {
k } ) ,  j  e.  ( n 
\  { l } )  |->  ( i m j ) ) ) ) )
18 fvex 6201 . . . . . 6  |-  ( Base `  A )  e.  _V
196, 18eqeltri 2697 . . . . 5  |-  B  e. 
_V
2019mptex 6486 . . . 4  |-  ( m  e.  B  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  ( N  \  { k } ) ,  j  e.  ( N  \  { l } )  |->  ( i m j ) ) ) )  e.  _V
2116, 17, 20ovmpt2a 6791 . . 3  |-  ( ( N  e.  _V  /\  R  e.  _V )  ->  ( N subMat  R )  =  ( m  e.  B  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  ( N  \  {
k } ) ,  j  e.  ( N 
\  { l } )  |->  ( i m j ) ) ) ) )
2217mpt2ndm0 6875 . . . . 5  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( N subMat  R )  =  (/) )
23 mpt0 6021 . . . . 5  |-  ( m  e.  (/)  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  ( N  \  {
k } ) ,  j  e.  ( N 
\  { l } )  |->  ( i m j ) ) ) )  =  (/)
2422, 23syl6eqr 2674 . . . 4  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( N subMat  R )  =  ( m  e.  (/)  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  ( N  \  {
k } ) ,  j  e.  ( N 
\  { l } )  |->  ( i m j ) ) ) ) )
253fveq2i 6194 . . . . . . 7  |-  ( Base `  A )  =  (
Base `  ( N Mat  R ) )
266, 25eqtri 2644 . . . . . 6  |-  B  =  ( Base `  ( N Mat  R ) )
27 matbas0pc 20215 . . . . . 6  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( Base `  ( N Mat  R ) )  =  (/) )
2826, 27syl5eq 2668 . . . . 5  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  B  =  (/) )
2928mpteq1d 4738 . . . 4  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( m  e.  B  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  ( N  \  { k } ) ,  j  e.  ( N  \  { l } ) 
|->  ( i m j ) ) ) )  =  ( m  e.  (/)  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  ( N  \  {
k } ) ,  j  e.  ( N 
\  { l } )  |->  ( i m j ) ) ) ) )
3024, 29eqtr4d 2659 . . 3  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( N subMat  R )  =  ( m  e.  B  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  ( N  \  {
k } ) ,  j  e.  ( N 
\  { l } )  |->  ( i m j ) ) ) ) )
3121, 30pm2.61i 176 . 2  |-  ( N subMat  R )  =  ( m  e.  B  |->  ( k  e.  N , 
l  e.  N  |->  ( i  e.  ( N 
\  { k } ) ,  j  e.  ( N  \  {
l } )  |->  ( i m j ) ) ) )
321, 31eqtri 2644 1  |-  Q  =  ( m  e.  B  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  ( N  \  { k } ) ,  j  e.  ( N  \  { l } ) 
|->  ( i m j ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571   (/)c0 3915   {csn 4177    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   Mat cmat 20213   subMat csubma 20382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-slot 15861  df-base 15863  df-mat 20214  df-subma 20383
This theorem is referenced by:  submaval0  20386
  Copyright terms: Public domain W3C validator