| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > submre | Structured version Visualization version Unicode version | ||
| Description: The subcollection of a closed set system below a given closed set is itself a closed set system. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| submre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 3834 |
. . 3
| |
| 2 | 1 | a1i 11 |
. 2
|
| 3 | simpr 477 |
. . 3
| |
| 4 | pwidg 4173 |
. . . 4
| |
| 5 | 4 | adantl 482 |
. . 3
|
| 6 | 3, 5 | elind 3798 |
. 2
|
| 7 | simp1l 1085 |
. . . 4
| |
| 8 | inss1 3833 |
. . . . . 6
| |
| 9 | sstr 3611 |
. . . . . 6
| |
| 10 | 8, 9 | mpan2 707 |
. . . . 5
|
| 11 | 10 | 3ad2ant2 1083 |
. . . 4
|
| 12 | simp3 1063 |
. . . 4
| |
| 13 | mreintcl 16255 |
. . . 4
| |
| 14 | 7, 11, 12, 13 | syl3anc 1326 |
. . 3
|
| 15 | sstr 3611 |
. . . . . . . 8
| |
| 16 | 1, 15 | mpan2 707 |
. . . . . . 7
|
| 17 | 16 | 3ad2ant2 1083 |
. . . . . 6
|
| 18 | intssuni2 4502 |
. . . . . 6
| |
| 19 | 17, 12, 18 | syl2anc 693 |
. . . . 5
|
| 20 | unipw 4918 |
. . . . 5
| |
| 21 | 19, 20 | syl6sseq 3651 |
. . . 4
|
| 22 | elpw2g 4827 |
. . . . . 6
| |
| 23 | 22 | adantl 482 |
. . . . 5
|
| 24 | 23 | 3ad2ant1 1082 |
. . . 4
|
| 25 | 21, 24 | mpbird 247 |
. . 3
|
| 26 | 14, 25 | elind 3798 |
. 2
|
| 27 | 2, 6, 26 | ismred 16262 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-mre 16246 |
| This theorem is referenced by: submrc 16288 |
| Copyright terms: Public domain | W3C validator |