| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mremre | Structured version Visualization version Unicode version | ||
| Description: The Moore collections of subsets of a space, viewed as a kind of subset of the power set, form a Moore collection in their own right on the power set. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| mremre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mresspw 16252 |
. . . . 5
| |
| 2 | selpw 4165 |
. . . . 5
| |
| 3 | 1, 2 | sylibr 224 |
. . . 4
|
| 4 | 3 | ssriv 3607 |
. . 3
|
| 5 | 4 | a1i 11 |
. 2
|
| 6 | ssid 3624 |
. . . 4
| |
| 7 | 6 | a1i 11 |
. . 3
|
| 8 | pwidg 4173 |
. . 3
| |
| 9 | intssuni2 4502 |
. . . . . 6
| |
| 10 | 9 | 3adant1 1079 |
. . . . 5
|
| 11 | unipw 4918 |
. . . . 5
| |
| 12 | 10, 11 | syl6sseq 3651 |
. . . 4
|
| 13 | elpw2g 4827 |
. . . . 5
| |
| 14 | 13 | 3ad2ant1 1082 |
. . . 4
|
| 15 | 12, 14 | mpbird 247 |
. . 3
|
| 16 | 7, 8, 15 | ismred 16262 |
. 2
|
| 17 | n0 3931 |
. . . . 5
| |
| 18 | intss1 4492 |
. . . . . . . . 9
| |
| 19 | 18 | adantl 482 |
. . . . . . . 8
|
| 20 | simpr 477 |
. . . . . . . . . 10
| |
| 21 | 20 | sselda 3603 |
. . . . . . . . 9
|
| 22 | mresspw 16252 |
. . . . . . . . 9
| |
| 23 | 21, 22 | syl 17 |
. . . . . . . 8
|
| 24 | 19, 23 | sstrd 3613 |
. . . . . . 7
|
| 25 | 24 | ex 450 |
. . . . . 6
|
| 26 | 25 | exlimdv 1861 |
. . . . 5
|
| 27 | 17, 26 | syl5bi 232 |
. . . 4
|
| 28 | 27 | 3impia 1261 |
. . 3
|
| 29 | simp2 1062 |
. . . . . . 7
| |
| 30 | 29 | sselda 3603 |
. . . . . 6
|
| 31 | mre1cl 16254 |
. . . . . 6
| |
| 32 | 30, 31 | syl 17 |
. . . . 5
|
| 33 | 32 | ralrimiva 2966 |
. . . 4
|
| 34 | elintg 4483 |
. . . . 5
| |
| 35 | 34 | 3ad2ant1 1082 |
. . . 4
|
| 36 | 33, 35 | mpbird 247 |
. . 3
|
| 37 | simp12 1092 |
. . . . . . 7
| |
| 38 | 37 | sselda 3603 |
. . . . . 6
|
| 39 | simpl2 1065 |
. . . . . . 7
| |
| 40 | intss1 4492 |
. . . . . . . 8
| |
| 41 | 40 | adantl 482 |
. . . . . . 7
|
| 42 | 39, 41 | sstrd 3613 |
. . . . . 6
|
| 43 | simpl3 1066 |
. . . . . 6
| |
| 44 | mreintcl 16255 |
. . . . . 6
| |
| 45 | 38, 42, 43, 44 | syl3anc 1326 |
. . . . 5
|
| 46 | 45 | ralrimiva 2966 |
. . . 4
|
| 47 | intex 4820 |
. . . . . 6
| |
| 48 | elintg 4483 |
. . . . . 6
| |
| 49 | 47, 48 | sylbi 207 |
. . . . 5
|
| 50 | 49 | 3ad2ant3 1084 |
. . . 4
|
| 51 | 46, 50 | mpbird 247 |
. . 3
|
| 52 | 28, 36, 51 | ismred 16262 |
. 2
|
| 53 | 5, 16, 52 | ismred 16262 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-mre 16246 |
| This theorem is referenced by: mreacs 16319 mreclatdemoBAD 20900 |
| Copyright terms: Public domain | W3C validator |