MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subval Structured version   Visualization version   Unicode version

Theorem subval 10272
Description: Value of subtraction, which is the (unique) element  x such that  B  +  x  =  A. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 2-Nov-2013.)
Assertion
Ref Expression
subval  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  =  ( iota_ x  e.  CC  ( B  +  x )  =  A ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem subval
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2633 . . 3  |-  ( y  =  A  ->  (
( z  +  x
)  =  y  <->  ( z  +  x )  =  A ) )
21riotabidv 6613 . 2  |-  ( y  =  A  ->  ( iota_ x  e.  CC  (
z  +  x )  =  y )  =  ( iota_ x  e.  CC  ( z  +  x
)  =  A ) )
3 oveq1 6657 . . . 4  |-  ( z  =  B  ->  (
z  +  x )  =  ( B  +  x ) )
43eqeq1d 2624 . . 3  |-  ( z  =  B  ->  (
( z  +  x
)  =  A  <->  ( B  +  x )  =  A ) )
54riotabidv 6613 . 2  |-  ( z  =  B  ->  ( iota_ x  e.  CC  (
z  +  x )  =  A )  =  ( iota_ x  e.  CC  ( B  +  x
)  =  A ) )
6 df-sub 10268 . 2  |-  -  =  ( y  e.  CC ,  z  e.  CC  |->  ( iota_ x  e.  CC  ( z  +  x
)  =  y ) )
7 riotaex 6615 . 2  |-  ( iota_ x  e.  CC  ( B  +  x )  =  A )  e.  _V
82, 5, 6, 7ovmpt2 6796 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  =  ( iota_ x  e.  CC  ( B  +  x )  =  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   iota_crio 6610  (class class class)co 6650   CCcc 9934    + caddc 9939    - cmin 10266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-sub 10268
This theorem is referenced by:  subcl  10280  subf  10283  subadd  10284
  Copyright terms: Public domain W3C validator