| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > swoord1 | Structured version Visualization version Unicode version | ||
| Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| swoer.1 |
|
| swoer.2 |
|
| swoer.3 |
|
| swoord.4 |
|
| swoord.5 |
|
| swoord.6 |
|
| Ref | Expression |
|---|---|
| swoord1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 |
. . . 4
| |
| 2 | swoord.6 |
. . . . 5
| |
| 3 | swoer.1 |
. . . . . . 7
| |
| 4 | difss 3737 |
. . . . . . 7
| |
| 5 | 3, 4 | eqsstri 3635 |
. . . . . 6
|
| 6 | 5 | ssbri 4697 |
. . . . 5
|
| 7 | df-br 4654 |
. . . . . 6
| |
| 8 | opelxp1 5150 |
. . . . . 6
| |
| 9 | 7, 8 | sylbi 207 |
. . . . 5
|
| 10 | 2, 6, 9 | 3syl 18 |
. . . 4
|
| 11 | swoord.5 |
. . . 4
| |
| 12 | swoord.4 |
. . . 4
| |
| 13 | swoer.3 |
. . . . 5
| |
| 14 | 13 | swopolem 5044 |
. . . 4
|
| 15 | 1, 10, 11, 12, 14 | syl13anc 1328 |
. . 3
|
| 16 | 3 | brdifun 7771 |
. . . . . . 7
|
| 17 | 10, 12, 16 | syl2anc 693 |
. . . . . 6
|
| 18 | 2, 17 | mpbid 222 |
. . . . 5
|
| 19 | orc 400 |
. . . . 5
| |
| 20 | 18, 19 | nsyl 135 |
. . . 4
|
| 21 | biorf 420 |
. . . 4
| |
| 22 | 20, 21 | syl 17 |
. . 3
|
| 23 | 15, 22 | sylibrd 249 |
. 2
|
| 24 | 13 | swopolem 5044 |
. . . 4
|
| 25 | 1, 12, 11, 10, 24 | syl13anc 1328 |
. . 3
|
| 26 | olc 399 |
. . . . 5
| |
| 27 | 18, 26 | nsyl 135 |
. . . 4
|
| 28 | biorf 420 |
. . . 4
| |
| 29 | 27, 28 | syl 17 |
. . 3
|
| 30 | 25, 29 | sylibrd 249 |
. 2
|
| 31 | 23, 30 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |