| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > swoer | Structured version Visualization version Unicode version | ||
| Description: Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| swoer.1 |
|
| swoer.2 |
|
| swoer.3 |
|
| Ref | Expression |
|---|---|
| swoer |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swoer.1 |
. . . . 5
| |
| 2 | difss 3737 |
. . . . 5
| |
| 3 | 1, 2 | eqsstri 3635 |
. . . 4
|
| 4 | relxp 5227 |
. . . 4
| |
| 5 | relss 5206 |
. . . 4
| |
| 6 | 3, 4, 5 | mp2 9 |
. . 3
|
| 7 | 6 | a1i 11 |
. 2
|
| 8 | simpr 477 |
. . 3
| |
| 9 | orcom 402 |
. . . . . 6
| |
| 10 | 9 | a1i 11 |
. . . . 5
|
| 11 | 10 | notbid 308 |
. . . 4
|
| 12 | 3 | ssbri 4697 |
. . . . . . 7
|
| 13 | 12 | adantl 482 |
. . . . . 6
|
| 14 | brxp 5147 |
. . . . . 6
| |
| 15 | 13, 14 | sylib 208 |
. . . . 5
|
| 16 | 1 | brdifun 7771 |
. . . . 5
|
| 17 | 15, 16 | syl 17 |
. . . 4
|
| 18 | 15 | simprd 479 |
. . . . 5
|
| 19 | 15 | simpld 475 |
. . . . 5
|
| 20 | 1 | brdifun 7771 |
. . . . 5
|
| 21 | 18, 19, 20 | syl2anc 693 |
. . . 4
|
| 22 | 11, 17, 21 | 3bitr4d 300 |
. . 3
|
| 23 | 8, 22 | mpbid 222 |
. 2
|
| 24 | simprl 794 |
. . . . 5
| |
| 25 | 12 | ad2antrl 764 |
. . . . . . 7
|
| 26 | 14 | simplbi 476 |
. . . . . . 7
|
| 27 | 25, 26 | syl 17 |
. . . . . 6
|
| 28 | 14 | simprbi 480 |
. . . . . . 7
|
| 29 | 25, 28 | syl 17 |
. . . . . 6
|
| 30 | 27, 29, 16 | syl2anc 693 |
. . . . 5
|
| 31 | 24, 30 | mpbid 222 |
. . . 4
|
| 32 | simprr 796 |
. . . . 5
| |
| 33 | 3 | brel 5168 |
. . . . . . . 8
|
| 34 | 33 | simprd 479 |
. . . . . . 7
|
| 35 | 32, 34 | syl 17 |
. . . . . 6
|
| 36 | 1 | brdifun 7771 |
. . . . . 6
|
| 37 | 29, 35, 36 | syl2anc 693 |
. . . . 5
|
| 38 | 32, 37 | mpbid 222 |
. . . 4
|
| 39 | simpl 473 |
. . . . . . 7
| |
| 40 | swoer.3 |
. . . . . . . 8
| |
| 41 | 40 | swopolem 5044 |
. . . . . . 7
|
| 42 | 39, 27, 35, 29, 41 | syl13anc 1328 |
. . . . . 6
|
| 43 | 40 | swopolem 5044 |
. . . . . . . 8
|
| 44 | 39, 35, 27, 29, 43 | syl13anc 1328 |
. . . . . . 7
|
| 45 | orcom 402 |
. . . . . . 7
| |
| 46 | 44, 45 | syl6ibr 242 |
. . . . . 6
|
| 47 | 42, 46 | orim12d 883 |
. . . . 5
|
| 48 | or4 550 |
. . . . 5
| |
| 49 | 47, 48 | syl6ib 241 |
. . . 4
|
| 50 | 31, 38, 49 | mtord 692 |
. . 3
|
| 51 | 1 | brdifun 7771 |
. . . 4
|
| 52 | 27, 35, 51 | syl2anc 693 |
. . 3
|
| 53 | 50, 52 | mpbird 247 |
. 2
|
| 54 | swoer.2 |
. . . . . . 7
| |
| 55 | 54, 40 | swopo 5045 |
. . . . . 6
|
| 56 | poirr 5046 |
. . . . . 6
| |
| 57 | 55, 56 | sylan 488 |
. . . . 5
|
| 58 | pm1.2 535 |
. . . . 5
| |
| 59 | 57, 58 | nsyl 135 |
. . . 4
|
| 60 | simpr 477 |
. . . . 5
| |
| 61 | 1 | brdifun 7771 |
. . . . 5
|
| 62 | 60, 60, 61 | syl2anc 693 |
. . . 4
|
| 63 | 59, 62 | mpbird 247 |
. . 3
|
| 64 | 3 | ssbri 4697 |
. . . . 5
|
| 65 | brxp 5147 |
. . . . . 6
| |
| 66 | 65 | simplbi 476 |
. . . . 5
|
| 67 | 64, 66 | syl 17 |
. . . 4
|
| 68 | 67 | adantl 482 |
. . 3
|
| 69 | 63, 68 | impbida 877 |
. 2
|
| 70 | 7, 23, 53, 69 | iserd 7768 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-po 5035 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-er 7742 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |