| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > swopo | Structured version Visualization version Unicode version | ||
| Description: A strict weak order is a partial order. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| swopo.1 |
|
| swopo.2 |
|
| Ref | Expression |
|---|---|
| swopo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 |
. . . . 5
| |
| 2 | 1 | ancli 574 |
. . . 4
|
| 3 | swopo.1 |
. . . . 5
| |
| 4 | 3 | ralrimivva 2971 |
. . . 4
|
| 5 | breq1 4656 |
. . . . . 6
| |
| 6 | breq2 4657 |
. . . . . . 7
| |
| 7 | 6 | notbid 308 |
. . . . . 6
|
| 8 | 5, 7 | imbi12d 334 |
. . . . 5
|
| 9 | breq2 4657 |
. . . . . 6
| |
| 10 | breq1 4656 |
. . . . . . 7
| |
| 11 | 10 | notbid 308 |
. . . . . 6
|
| 12 | 9, 11 | imbi12d 334 |
. . . . 5
|
| 13 | 8, 12 | rspc2va 3323 |
. . . 4
|
| 14 | 2, 4, 13 | syl2anr 495 |
. . 3
|
| 15 | 14 | pm2.01d 181 |
. 2
|
| 16 | 3 | 3adantr1 1220 |
. . 3
|
| 17 | swopo.2 |
. . . . . . 7
| |
| 18 | 17 | imp 445 |
. . . . . 6
|
| 19 | 18 | orcomd 403 |
. . . . 5
|
| 20 | 19 | ord 392 |
. . . 4
|
| 21 | 20 | expimpd 629 |
. . 3
|
| 22 | 16, 21 | sylan2d 499 |
. 2
|
| 23 | 15, 22 | ispod 5043 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-po 5035 |
| This theorem is referenced by: swoer 7772 swoso 7775 |
| Copyright terms: Public domain | W3C validator |