Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem28 Structured version   Visualization version   Unicode version

Theorem poimirlem28 33437
Description: Lemma for poimir 33442, a variant of Sperner's lemma. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimirlem28.1  |-  ( p  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  ->  B  =  C )
poimirlem28.2  |-  ( (
ph  /\  p :
( 1 ... N
) --> ( 0 ... K ) )  ->  B  e.  ( 0 ... N ) )
poimirlem28.3  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  p :
( 1 ... N
) --> ( 0 ... K )  /\  (
p `  n )  =  0 ) )  ->  B  <  n
)
poimirlem28.4  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  p :
( 1 ... N
) --> ( 0 ... K )  /\  (
p `  n )  =  K ) )  ->  B  =/=  ( n  - 
1 ) )
poimirlem28.5  |-  ( ph  ->  K  e.  NN )
Assertion
Ref Expression
poimirlem28  |-  ( ph  ->  E. s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C )
Distinct variable groups:    f, i,
j, n, p, s    ph, j, n    j, N, n    ph, i, p, s    B, f, i, j, n, s    f, K, i, j, n, p, s   
f, N, i, p, s    C, i, n, p
Allowed substitution hints:    ph( f)    B( p)    C( f, j, s)

Proof of Theorem poimirlem28
Dummy variables  k  m  q  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poimir.0 . . . . . 6  |-  ( ph  ->  N  e.  NN )
21nnnn0d 11351 . . . . 5  |-  ( ph  ->  N  e.  NN0 )
31nnred 11035 . . . . . 6  |-  ( ph  ->  N  e.  RR )
43leidd 10594 . . . . 5  |-  ( ph  ->  N  <_  N )
52, 2, 43jca 1242 . . . 4  |-  ( ph  ->  ( N  e.  NN0  /\  N  e.  NN0  /\  N  <_  N ) )
6 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( k  =  0  ->  (
1 ... k )  =  ( 1 ... 0
) )
7 fz10 12362 . . . . . . . . . . . . . . . 16  |-  ( 1 ... 0 )  =  (/)
86, 7syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( k  =  0  ->  (
1 ... k )  =  (/) )
98oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( k  =  0  ->  (
( 0..^ K )  ^m  ( 1 ... k ) )  =  ( ( 0..^ K )  ^m  (/) ) )
10 fzofi 12773 . . . . . . . . . . . . . . . 16  |-  ( 0..^ K )  e.  Fin
11 map0e 7895 . . . . . . . . . . . . . . . 16  |-  ( ( 0..^ K )  e. 
Fin  ->  ( ( 0..^ K )  ^m  (/) )  =  1o )
1210, 11ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( ( 0..^ K )  ^m  (/) )  =  1o
13 df1o2 7572 . . . . . . . . . . . . . . 15  |-  1o  =  { (/) }
1412, 13eqtri 2644 . . . . . . . . . . . . . 14  |-  ( ( 0..^ K )  ^m  (/) )  =  { (/) }
159, 14syl6eq 2672 . . . . . . . . . . . . 13  |-  ( k  =  0  ->  (
( 0..^ K )  ^m  ( 1 ... k ) )  =  { (/) } )
16 eqidd 2623 . . . . . . . . . . . . . . . . 17  |-  ( k  =  0  ->  f  =  f )
1716, 8, 8f1oeq123d 6133 . . . . . . . . . . . . . . . 16  |-  ( k  =  0  ->  (
f : ( 1 ... k ) -1-1-onto-> ( 1 ... k )  <->  f : (/) -1-1-onto-> (/) ) )
18 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  (/)  =  (/)
19 f1o00 6171 . . . . . . . . . . . . . . . . 17  |-  ( f : (/)
-1-1-onto-> (/)  <->  ( f  =  (/)  /\  (/)  =  (/) ) )
2018, 19mpbiran2 954 . . . . . . . . . . . . . . . 16  |-  ( f : (/)
-1-1-onto-> (/)  <->  f  =  (/) )
2117, 20syl6bb 276 . . . . . . . . . . . . . . 15  |-  ( k  =  0  ->  (
f : ( 1 ... k ) -1-1-onto-> ( 1 ... k )  <->  f  =  (/) ) )
2221abbidv 2741 . . . . . . . . . . . . . 14  |-  ( k  =  0  ->  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) }  =  { f  |  f  =  (/) } )
23 df-sn 4178 . . . . . . . . . . . . . 14  |-  { (/) }  =  { f  |  f  =  (/) }
2422, 23syl6eqr 2674 . . . . . . . . . . . . 13  |-  ( k  =  0  ->  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) }  =  { (/) } )
2515, 24xpeq12d 5140 . . . . . . . . . . . 12  |-  ( k  =  0  ->  (
( ( 0..^ K )  ^m  ( 1 ... k ) )  X.  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } )  =  ( {
(/) }  X.  { (/) } ) )
26 0ex 4790 . . . . . . . . . . . . 13  |-  (/)  e.  _V
2726, 26xpsn 6407 . . . . . . . . . . . 12  |-  ( {
(/) }  X.  { (/) } )  =  { <. (/)
,  (/) >. }
2825, 27syl6req 2673 . . . . . . . . . . 11  |-  ( k  =  0  ->  { <. (/)
,  (/) >. }  =  ( ( ( 0..^ K )  ^m  ( 1 ... k ) )  X.  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } ) )
29 elsni 4194 . . . . . . . . . . . . . . . . . . 19  |-  ( s  e.  { <. (/) ,  (/) >. }  ->  s  =  <. (/)
,  (/) >. )
3026, 26op1std 7178 . . . . . . . . . . . . . . . . . . 19  |-  ( s  =  <. (/) ,  (/) >.  ->  ( 1st `  s )  =  (/) )
3129, 30syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( s  e.  { <. (/) ,  (/) >. }  ->  ( 1st `  s
)  =  (/) )
3231oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( s  e.  { <. (/) ,  (/) >. }  ->  ( ( 1st `  s )  oF  +  (/) )  =  (
(/)  oF  +  (/) ) )
33 f0 6086 . . . . . . . . . . . . . . . . . . . 20  |-  (/) : (/) --> (/)
34 ffn 6045 . . . . . . . . . . . . . . . . . . . 20  |-  ( (/) :
(/) --> (/)  ->  (/)  Fn  (/) )
3533, 34mp1i 13 . . . . . . . . . . . . . . . . . . 19  |-  ( s  e.  { <. (/) ,  (/) >. }  ->  (/)  Fn  (/) )
3626a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( s  e.  { <. (/) ,  (/) >. }  ->  (/)  e.  _V )
37 inidm 3822 . . . . . . . . . . . . . . . . . . 19  |-  ( (/)  i^i  (/) )  =  (/)
38 0fv 6227 . . . . . . . . . . . . . . . . . . . 20  |-  ( (/) `  n )  =  (/)
3938a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( s  e.  { <. (/)
,  (/) >. }  /\  n  e.  (/) )  ->  ( (/) `  n )  =  (/) )
4035, 35, 36, 36, 37, 39, 39offval 6904 . . . . . . . . . . . . . . . . . 18  |-  ( s  e.  { <. (/) ,  (/) >. }  ->  ( (/)  oF  +  (/) )  =  ( n  e.  (/)  |->  ( (/)  +  (/) ) ) )
41 mpt0 6021 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  (/)  |->  ( (/)  +  (/) ) )  =  (/)
4240, 41syl6eq 2672 . . . . . . . . . . . . . . . . 17  |-  ( s  e.  { <. (/) ,  (/) >. }  ->  ( (/)  oF  +  (/) )  =  (/) )
4332, 42eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( s  e.  { <. (/) ,  (/) >. }  ->  ( ( 1st `  s )  oF  +  (/) )  =  (/) )
4443uneq1d 3766 . . . . . . . . . . . . . . 15  |-  ( s  e.  { <. (/) ,  (/) >. }  ->  ( ( ( 1st `  s )  oF  +  (/) )  u.  ( (
1 ... N )  X. 
{ 0 } ) )  =  ( (/)  u.  ( ( 1 ... N )  X.  {
0 } ) ) )
45 uncom 3757 . . . . . . . . . . . . . . . 16  |-  ( (/)  u.  ( ( 1 ... N )  X.  {
0 } ) )  =  ( ( ( 1 ... N )  X.  { 0 } )  u.  (/) )
46 un0 3967 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1 ... N
)  X.  { 0 } )  u.  (/) )  =  ( ( 1 ... N )  X.  {
0 } )
4745, 46eqtri 2644 . . . . . . . . . . . . . . 15  |-  ( (/)  u.  ( ( 1 ... N )  X.  {
0 } ) )  =  ( ( 1 ... N )  X. 
{ 0 } )
4844, 47syl6req 2673 . . . . . . . . . . . . . 14  |-  ( s  e.  { <. (/) ,  (/) >. }  ->  ( ( 1 ... N )  X. 
{ 0 } )  =  ( ( ( 1st `  s )  oF  +  (/) )  u.  ( (
1 ... N )  X. 
{ 0 } ) ) )
4948csbeq1d 3540 . . . . . . . . . . . . 13  |-  ( s  e.  { <. (/) ,  (/) >. }  ->  [_ ( ( 1 ... N )  X. 
{ 0 } )  /  p ]_ B  =  [_ ( ( ( 1st `  s )  oF  +  (/) )  u.  ( (
1 ... N )  X. 
{ 0 } ) )  /  p ]_ B )
5049eqeq2d 2632 . . . . . . . . . . . 12  |-  ( s  e.  { <. (/) ,  (/) >. }  ->  ( 0  = 
[_ ( ( 1 ... N )  X. 
{ 0 } )  /  p ]_ B  <->  0  =  [_ ( ( ( 1st `  s
)  oF  +  (/) )  u.  ( ( 1 ... N )  X.  { 0 } ) )  /  p ]_ B ) )
51 oveq2 6658 . . . . . . . . . . . . . . 15  |-  ( k  =  0  ->  (
0 ... k )  =  ( 0 ... 0
) )
52 0z 11388 . . . . . . . . . . . . . . . 16  |-  0  e.  ZZ
53 fzsn 12383 . . . . . . . . . . . . . . . 16  |-  ( 0  e.  ZZ  ->  (
0 ... 0 )  =  { 0 } )
5452, 53ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 0 ... 0 )  =  { 0 }
5551, 54syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( k  =  0  ->  (
0 ... k )  =  { 0 } )
56 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  =  0  ->  (
( j  +  1 ) ... k )  =  ( ( j  +  1 ) ... 0 ) )
5756imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  0  ->  (
( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  =  ( ( 2nd `  s ) " (
( j  +  1 ) ... 0 ) ) )
5857xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  0  ->  (
( ( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  X.  { 0 } )  =  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... 0 ) )  X.  { 0 } ) )
5958uneq2d 3767 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  0  ->  (
( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  X.  { 0 } ) )  =  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... 0 ) )  X.  { 0 } ) ) )
6059oveq2d 6666 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  0  ->  (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... 0 ) )  X. 
{ 0 } ) ) ) )
61 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  0  ->  (
k  +  1 )  =  ( 0  +  1 ) )
62 0p1e1 11132 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 0  +  1 )  =  1
6361, 62syl6eq 2672 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  0  ->  (
k  +  1 )  =  1 )
6463oveq1d 6665 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  0  ->  (
( k  +  1 ) ... N )  =  ( 1 ... N ) )
6564xpeq1d 5138 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  0  ->  (
( ( k  +  1 ) ... N
)  X.  { 0 } )  =  ( ( 1 ... N
)  X.  { 0 } ) )
6660, 65uneq12d 3768 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  0  ->  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  =  ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... 0 ) )  X.  { 0 } ) ) )  u.  ( ( 1 ... N )  X.  {
0 } ) ) )
6766csbeq1d 3540 . . . . . . . . . . . . . . . . 17  |-  ( k  =  0  ->  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... 0 ) )  X.  { 0 } ) ) )  u.  ( ( 1 ... N )  X.  {
0 } ) )  /  p ]_ B
)
6867eqeq2d 2632 . . . . . . . . . . . . . . . 16  |-  ( k  =  0  ->  (
i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... 0 ) )  X.  { 0 } ) ) )  u.  ( ( 1 ... N )  X.  {
0 } ) )  /  p ]_ B
) )
6955, 68rexeqbidv 3153 . . . . . . . . . . . . . . 15  |-  ( k  =  0  ->  ( E. j  e.  (
0 ... k ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  E. j  e.  { 0 } i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... 0 ) )  X. 
{ 0 } ) ) )  u.  (
( 1 ... N
)  X.  { 0 } ) )  /  p ]_ B ) )
70 c0ex 10034 . . . . . . . . . . . . . . . 16  |-  0  e.  _V
71 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( j  =  0  ->  (
1 ... j )  =  ( 1 ... 0
) )
7271, 7syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( j  =  0  ->  (
1 ... j )  =  (/) )
7372imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( j  =  0  ->  (
( 2nd `  s
) " ( 1 ... j ) )  =  ( ( 2nd `  s ) " (/) ) )
74 ima0 5481 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( 2nd `  s )
" (/) )  =  (/)
7573, 74syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  =  0  ->  (
( 2nd `  s
) " ( 1 ... j ) )  =  (/) )
7675xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  =  0  ->  (
( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  =  ( (/)  X. 
{ 1 } ) )
77 0xp 5199 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (/)  X. 
{ 1 } )  =  (/)
7876, 77syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  =  0  ->  (
( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  =  (/) )
79 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  =  0  ->  (
j  +  1 )  =  ( 0  +  1 ) )
8079, 62syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( j  =  0  ->  (
j  +  1 )  =  1 )
8180oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( j  =  0  ->  (
( j  +  1 ) ... 0 )  =  ( 1 ... 0 ) )
8281, 7syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( j  =  0  ->  (
( j  +  1 ) ... 0 )  =  (/) )
8382imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( j  =  0  ->  (
( 2nd `  s
) " ( ( j  +  1 ) ... 0 ) )  =  ( ( 2nd `  s ) " (/) ) )
8483, 74syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  =  0  ->  (
( 2nd `  s
) " ( ( j  +  1 ) ... 0 ) )  =  (/) )
8584xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  =  0  ->  (
( ( 2nd `  s
) " ( ( j  +  1 ) ... 0 ) )  X.  { 0 } )  =  ( (/)  X. 
{ 0 } ) )
86 0xp 5199 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (/)  X. 
{ 0 } )  =  (/)
8785, 86syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  =  0  ->  (
( ( 2nd `  s
) " ( ( j  +  1 ) ... 0 ) )  X.  { 0 } )  =  (/) )
8878, 87uneq12d 3768 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  0  ->  (
( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... 0 ) )  X.  { 0 } ) )  =  (
(/)  u.  (/) ) )
89 un0 3967 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (/)  u.  (/) )  =  (/)
9088, 89syl6eq 2672 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  =  0  ->  (
( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... 0 ) )  X.  { 0 } ) )  =  (/) )
9190oveq2d 6666 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  0  ->  (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... 0 ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  s
)  oF  +  (/) ) )
9291uneq1d 3766 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  0  ->  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... 0 ) )  X. 
{ 0 } ) ) )  u.  (
( 1 ... N
)  X.  { 0 } ) )  =  ( ( ( 1st `  s )  oF  +  (/) )  u.  (
( 1 ... N
)  X.  { 0 } ) ) )
9392csbeq1d 3540 . . . . . . . . . . . . . . . . 17  |-  ( j  =  0  ->  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... 0 ) )  X. 
{ 0 } ) ) )  u.  (
( 1 ... N
)  X.  { 0 } ) )  /  p ]_ B  =  [_ ( ( ( 1st `  s )  oF  +  (/) )  u.  (
( 1 ... N
)  X.  { 0 } ) )  /  p ]_ B )
9493eqeq2d 2632 . . . . . . . . . . . . . . . 16  |-  ( j  =  0  ->  (
i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... 0 ) )  X. 
{ 0 } ) ) )  u.  (
( 1 ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  i  =  [_ ( ( ( 1st `  s )  oF  +  (/) )  u.  (
( 1 ... N
)  X.  { 0 } ) )  /  p ]_ B ) )
9570, 94rexsn 4223 . . . . . . . . . . . . . . 15  |-  ( E. j  e.  { 0 } i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... 0 ) )  X.  { 0 } ) ) )  u.  ( ( 1 ... N )  X.  {
0 } ) )  /  p ]_ B  <->  i  =  [_ ( ( ( 1st `  s
)  oF  +  (/) )  u.  ( ( 1 ... N )  X.  { 0 } ) )  /  p ]_ B )
9669, 95syl6bb 276 . . . . . . . . . . . . . 14  |-  ( k  =  0  ->  ( E. j  e.  (
0 ... k ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  i  =  [_ ( ( ( 1st `  s )  oF  +  (/) )  u.  (
( 1 ... N
)  X.  { 0 } ) )  /  p ]_ B ) )
9755, 96raleqbidv 3152 . . . . . . . . . . . . 13  |-  ( k  =  0  ->  ( A. i  e.  (
0 ... k ) E. j  e.  ( 0 ... k ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  A. i  e.  { 0 } i  =  [_ ( ( ( 1st `  s
)  oF  +  (/) )  u.  ( ( 1 ... N )  X.  { 0 } ) )  /  p ]_ B ) )
98 eqeq1 2626 . . . . . . . . . . . . . 14  |-  ( i  =  0  ->  (
i  =  [_ (
( ( 1st `  s
)  oF  +  (/) )  u.  ( ( 1 ... N )  X.  { 0 } ) )  /  p ]_ B  <->  0  =  [_ ( ( ( 1st `  s )  oF  +  (/) )  u.  (
( 1 ... N
)  X.  { 0 } ) )  /  p ]_ B ) )
9970, 98ralsn 4222 . . . . . . . . . . . . 13  |-  ( A. i  e.  { 0 } i  =  [_ ( ( ( 1st `  s )  oF  +  (/) )  u.  (
( 1 ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  0  =  [_ ( ( ( 1st `  s )  oF  +  (/) )  u.  (
( 1 ... N
)  X.  { 0 } ) )  /  p ]_ B )
10097, 99syl6rbb 277 . . . . . . . . . . . 12  |-  ( k  =  0  ->  (
0  =  [_ (
( ( 1st `  s
)  oF  +  (/) )  u.  ( ( 1 ... N )  X.  { 0 } ) )  /  p ]_ B  <->  A. i  e.  ( 0 ... k ) E. j  e.  ( 0 ... k ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B ) )
10150, 100sylan9bbr 737 . . . . . . . . . . 11  |-  ( ( k  =  0  /\  s  e.  { <. (/)
,  (/) >. } )  -> 
( 0  =  [_ ( ( 1 ... N )  X.  {
0 } )  /  p ]_ B  <->  A. i  e.  ( 0 ... k
) E. j  e.  ( 0 ... k
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  X.  { 0 } ) ) )  u.  ( ( ( k  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
) )
10228, 101rabeqbidva 3196 . . . . . . . . . 10  |-  ( k  =  0  ->  { s  e.  { <. (/) ,  (/) >. }  |  0  =  [_ ( ( 1 ... N )  X.  {
0 } )  /  p ]_ B }  =  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... k ) )  X.  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } )  |  A. i  e.  ( 0 ... k
) E. j  e.  ( 0 ... k
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  X.  { 0 } ) ) )  u.  ( ( ( k  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )
103102eqcomd 2628 . . . . . . . . 9  |-  ( k  =  0  ->  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... k
) )  X.  {
f  |  f : ( 1 ... k
)
-1-1-onto-> ( 1 ... k
) } )  | 
A. i  e.  ( 0 ... k ) E. j  e.  ( 0 ... k ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  =  { s  e.  { <.
(/) ,  (/) >. }  | 
0  =  [_ (
( 1 ... N
)  X.  { 0 } )  /  p ]_ B } )
104103fveq2d 6195 . . . . . . . 8  |-  ( k  =  0  ->  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... k ) )  X.  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } )  |  A. i  e.  ( 0 ... k
) E. j  e.  ( 0 ... k
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  X.  { 0 } ) ) )  u.  ( ( ( k  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  =  (
# `  { s  e.  { <. (/) ,  (/) >. }  | 
0  =  [_ (
( 1 ... N
)  X.  { 0 } )  /  p ]_ B } ) )
105104breq2d 4665 . . . . . . 7  |-  ( k  =  0  ->  (
2  ||  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... k ) )  X. 
{ f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k
) } )  | 
A. i  e.  ( 0 ... k ) E. j  e.  ( 0 ... k ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  <->  2  ||  ( # `  { s  e.  { <.
(/) ,  (/) >. }  | 
0  =  [_ (
( 1 ... N
)  X.  { 0 } )  /  p ]_ B } ) ) )
106105notbid 308 . . . . . 6  |-  ( k  =  0  ->  ( -.  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... k ) )  X.  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } )  |  A. i  e.  ( 0 ... k
) E. j  e.  ( 0 ... k
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  X.  { 0 } ) ) )  u.  ( ( ( k  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  <->  -.  2  ||  ( # `  {
s  e.  { <. (/)
,  (/) >. }  |  0  =  [_ ( ( 1 ... N )  X.  { 0 } )  /  p ]_ B } ) ) )
107106imbi2d 330 . . . . 5  |-  ( k  =  0  ->  (
( ph  ->  -.  2  ||  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... k ) )  X. 
{ f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k
) } )  | 
A. i  e.  ( 0 ... k ) E. j  e.  ( 0 ... k ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) )  <->  ( ph  ->  -.  2  ||  ( # `  { s  e.  { <.
(/) ,  (/) >. }  | 
0  =  [_ (
( 1 ... N
)  X.  { 0 } )  /  p ]_ B } ) ) ) )
108 oveq2 6658 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
1 ... k )  =  ( 1 ... m
) )
109108oveq2d 6666 . . . . . . . . . . 11  |-  ( k  =  m  ->  (
( 0..^ K )  ^m  ( 1 ... k ) )  =  ( ( 0..^ K )  ^m  ( 1 ... m ) ) )
110 eqidd 2623 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  f  =  f )
111110, 108, 108f1oeq123d 6133 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
f : ( 1 ... k ) -1-1-onto-> ( 1 ... k )  <->  f :
( 1 ... m
)
-1-1-onto-> ( 1 ... m
) ) )
112111abbidv 2741 . . . . . . . . . . 11  |-  ( k  =  m  ->  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) }  =  { f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } )
113109, 112xpeq12d 5140 . . . . . . . . . 10  |-  ( k  =  m  ->  (
( ( 0..^ K )  ^m  ( 1 ... k ) )  X.  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } )  =  ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  X. 
{ f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m
) } ) )
114 oveq2 6658 . . . . . . . . . . 11  |-  ( k  =  m  ->  (
0 ... k )  =  ( 0 ... m
) )
115 oveq2 6658 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  m  ->  (
( j  +  1 ) ... k )  =  ( ( j  +  1 ) ... m ) )
116115imaeq2d 5466 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  m  ->  (
( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  =  ( ( 2nd `  s ) " (
( j  +  1 ) ... m ) ) )
117116xpeq1d 5138 . . . . . . . . . . . . . . . . 17  |-  ( k  =  m  ->  (
( ( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  X.  { 0 } )  =  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) )
118117uneq2d 3767 . . . . . . . . . . . . . . . 16  |-  ( k  =  m  ->  (
( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  X.  { 0 } ) )  =  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )
119118oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( k  =  m  ->  (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... m ) )  X. 
{ 0 } ) ) ) )
120 oveq1 6657 . . . . . . . . . . . . . . . . 17  |-  ( k  =  m  ->  (
k  +  1 )  =  ( m  + 
1 ) )
121120oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( k  =  m  ->  (
( k  +  1 ) ... N )  =  ( ( m  +  1 ) ... N ) )
122121xpeq1d 5138 . . . . . . . . . . . . . . 15  |-  ( k  =  m  ->  (
( ( k  +  1 ) ... N
)  X.  { 0 } )  =  ( ( ( m  + 
1 ) ... N
)  X.  { 0 } ) )
123119, 122uneq12d 3768 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  =  ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )  u.  ( ( ( m  +  1 ) ... N )  X.  {
0 } ) ) )
124123csbeq1d 3540 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )  u.  ( ( ( m  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
)
125124eqeq2d 2632 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )  u.  ( ( ( m  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
) )
126114, 125rexeqbidv 3153 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( E. j  e.  (
0 ... k ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )  u.  ( ( ( m  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
) )
127114, 126raleqbidv 3152 . . . . . . . . . 10  |-  ( k  =  m  ->  ( A. i  e.  (
0 ... k ) E. j  e.  ( 0 ... k ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )  u.  ( ( ( m  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
) )
128113, 127rabeqbidv 3195 . . . . . . . . 9  |-  ( k  =  m  ->  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... k
) )  X.  {
f  |  f : ( 1 ... k
)
-1-1-onto-> ( 1 ... k
) } )  | 
A. i  e.  ( 0 ... k ) E. j  e.  ( 0 ... k ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  =  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  X.  { f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } )  |  A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )  u.  ( ( ( m  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )
129128fveq2d 6195 . . . . . . . 8  |-  ( k  =  m  ->  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... k ) )  X.  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } )  |  A. i  e.  ( 0 ... k
) E. j  e.  ( 0 ... k
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  X.  { 0 } ) ) )  u.  ( ( ( k  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  =  (
# `  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... m ) )  X.  { f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } )  |  A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )  u.  ( ( ( m  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } ) )
130129breq2d 4665 . . . . . . 7  |-  ( k  =  m  ->  (
2  ||  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... k ) )  X. 
{ f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k
) } )  | 
A. i  e.  ( 0 ... k ) E. j  e.  ( 0 ... k ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  <->  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  X.  { f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } )  |  A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )  u.  ( ( ( m  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } ) ) )
131130notbid 308 . . . . . 6  |-  ( k  =  m  ->  ( -.  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... k ) )  X.  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } )  |  A. i  e.  ( 0 ... k
) E. j  e.  ( 0 ... k
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  X.  { 0 } ) ) )  u.  ( ( ( k  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  <->  -.  2  ||  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  X. 
{ f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m
) } )  | 
A. i  e.  ( 0 ... m ) E. j  e.  ( 0 ... m ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... m ) )  X. 
{ 0 } ) ) )  u.  (
( ( m  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) ) )
132131imbi2d 330 . . . . 5  |-  ( k  =  m  ->  (
( ph  ->  -.  2  ||  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... k ) )  X. 
{ f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k
) } )  | 
A. i  e.  ( 0 ... k ) E. j  e.  ( 0 ... k ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) )  <->  ( ph  ->  -.  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  X.  { f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } )  |  A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )  u.  ( ( ( m  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } ) ) ) )
133 oveq2 6658 . . . . . . . . . . . 12  |-  ( k  =  ( m  + 
1 )  ->  (
1 ... k )  =  ( 1 ... (
m  +  1 ) ) )
134133oveq2d 6666 . . . . . . . . . . 11  |-  ( k  =  ( m  + 
1 )  ->  (
( 0..^ K )  ^m  ( 1 ... k ) )  =  ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) ) )
135 eqidd 2623 . . . . . . . . . . . . 13  |-  ( k  =  ( m  + 
1 )  ->  f  =  f )
136135, 133, 133f1oeq123d 6133 . . . . . . . . . . . 12  |-  ( k  =  ( m  + 
1 )  ->  (
f : ( 1 ... k ) -1-1-onto-> ( 1 ... k )  <->  f :
( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) ) )
137136abbidv 2741 . . . . . . . . . . 11  |-  ( k  =  ( m  + 
1 )  ->  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) }  =  { f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... ( m  +  1 ) ) } )
138134, 137xpeq12d 5140 . . . . . . . . . 10  |-  ( k  =  ( m  + 
1 )  ->  (
( ( 0..^ K )  ^m  ( 1 ... k ) )  X.  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } )  =  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } ) )
139 oveq2 6658 . . . . . . . . . . 11  |-  ( k  =  ( m  + 
1 )  ->  (
0 ... k )  =  ( 0 ... (
m  +  1 ) ) )
140 oveq2 6658 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  ( m  + 
1 )  ->  (
( j  +  1 ) ... k )  =  ( ( j  +  1 ) ... ( m  +  1 ) ) )
141140imaeq2d 5466 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( m  + 
1 )  ->  (
( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  =  ( ( 2nd `  s ) " (
( j  +  1 ) ... ( m  +  1 ) ) ) )
142141xpeq1d 5138 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( m  + 
1 )  ->  (
( ( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  X.  { 0 } )  =  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) )
143142uneq2d 3767 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( m  + 
1 )  ->  (
( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  X.  { 0 } ) )  =  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )
144143oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( k  =  ( m  + 
1 )  ->  (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) ) )
145 oveq1 6657 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( m  + 
1 )  ->  (
k  +  1 )  =  ( ( m  +  1 )  +  1 ) )
146145oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( m  + 
1 )  ->  (
( k  +  1 ) ... N )  =  ( ( ( m  +  1 )  +  1 ) ... N ) )
147146xpeq1d 5138 . . . . . . . . . . . . . . 15  |-  ( k  =  ( m  + 
1 )  ->  (
( ( k  +  1 ) ... N
)  X.  { 0 } )  =  ( ( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )
148144, 147uneq12d 3768 . . . . . . . . . . . . . 14  |-  ( k  =  ( m  + 
1 )  ->  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  =  ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) )
149148csbeq1d 3540 . . . . . . . . . . . . 13  |-  ( k  =  ( m  + 
1 )  ->  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
)
150149eqeq2d 2632 . . . . . . . . . . . 12  |-  ( k  =  ( m  + 
1 )  ->  (
i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
) )
151139, 150rexeqbidv 3153 . . . . . . . . . . 11  |-  ( k  =  ( m  + 
1 )  ->  ( E. j  e.  (
0 ... k ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
) )
152139, 151raleqbidv 3152 . . . . . . . . . 10  |-  ( k  =  ( m  + 
1 )  ->  ( A. i  e.  (
0 ... k ) E. j  e.  ( 0 ... k ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
) )
153138, 152rabeqbidv 3195 . . . . . . . . 9  |-  ( k  =  ( m  + 
1 )  ->  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... k
) )  X.  {
f  |  f : ( 1 ... k
)
-1-1-onto-> ( 1 ... k
) } )  | 
A. i  e.  ( 0 ... k ) E. j  e.  ( 0 ... k ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  =  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )
154153fveq2d 6195 . . . . . . . 8  |-  ( k  =  ( m  + 
1 )  ->  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... k ) )  X.  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } )  |  A. i  e.  ( 0 ... k
) E. j  e.  ( 0 ... k
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  X.  { 0 } ) ) )  u.  ( ( ( k  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  =  (
# `  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } ) )
155154breq2d 4665 . . . . . . 7  |-  ( k  =  ( m  + 
1 )  ->  (
2  ||  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... k ) )  X. 
{ f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k
) } )  | 
A. i  e.  ( 0 ... k ) E. j  e.  ( 0 ... k ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  <->  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } ) ) )
156155notbid 308 . . . . . 6  |-  ( k  =  ( m  + 
1 )  ->  ( -.  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... k ) )  X.  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } )  |  A. i  e.  ( 0 ... k
) E. j  e.  ( 0 ... k
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  X.  { 0 } ) ) )  u.  ( ( ( k  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  <->  -.  2  ||  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) ) )
157156imbi2d 330 . . . . 5  |-  ( k  =  ( m  + 
1 )  ->  (
( ph  ->  -.  2  ||  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... k ) )  X. 
{ f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k
) } )  | 
A. i  e.  ( 0 ... k ) E. j  e.  ( 0 ... k ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) )  <->  ( ph  ->  -.  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } ) ) ) )
158 oveq2 6658 . . . . . . . . . . . 12  |-  ( k  =  N  ->  (
1 ... k )  =  ( 1 ... N
) )
159158oveq2d 6666 . . . . . . . . . . 11  |-  ( k  =  N  ->  (
( 0..^ K )  ^m  ( 1 ... k ) )  =  ( ( 0..^ K )  ^m  ( 1 ... N ) ) )
160 eqidd 2623 . . . . . . . . . . . . 13  |-  ( k  =  N  ->  f  =  f )
161160, 158, 158f1oeq123d 6133 . . . . . . . . . . . 12  |-  ( k  =  N  ->  (
f : ( 1 ... k ) -1-1-onto-> ( 1 ... k )  <->  f :
( 1 ... N
)
-1-1-onto-> ( 1 ... N
) ) )
162161abbidv 2741 . . . . . . . . . . 11  |-  ( k  =  N  ->  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) }  =  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
163159, 162xpeq12d 5140 . . . . . . . . . 10  |-  ( k  =  N  ->  (
( ( 0..^ K )  ^m  ( 1 ... k ) )  X.  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } )  =  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )
164 oveq2 6658 . . . . . . . . . . 11  |-  ( k  =  N  ->  (
0 ... k )  =  ( 0 ... N
) )
165 oveq2 6658 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  N  ->  (
( j  +  1 ) ... k )  =  ( ( j  +  1 ) ... N ) )
166165imaeq2d 5466 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  N  ->  (
( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  =  ( ( 2nd `  s ) " (
( j  +  1 ) ... N ) ) )
167166xpeq1d 5138 . . . . . . . . . . . . . . . . 17  |-  ( k  =  N  ->  (
( ( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  X.  { 0 } )  =  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) )
168167uneq2d 3767 . . . . . . . . . . . . . . . 16  |-  ( k  =  N  ->  (
( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  X.  { 0 } ) )  =  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )
169168oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( k  =  N  ->  (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
170 oveq1 6657 . . . . . . . . . . . . . . . . 17  |-  ( k  =  N  ->  (
k  +  1 )  =  ( N  + 
1 ) )
171170oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( k  =  N  ->  (
( k  +  1 ) ... N )  =  ( ( N  +  1 ) ... N ) )
172171xpeq1d 5138 . . . . . . . . . . . . . . 15  |-  ( k  =  N  ->  (
( ( k  +  1 ) ... N
)  X.  { 0 } )  =  ( ( ( N  + 
1 ) ... N
)  X.  { 0 } ) )
173169, 172uneq12d 3768 . . . . . . . . . . . . . 14  |-  ( k  =  N  ->  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  =  ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) ) )
174173csbeq1d 3540 . . . . . . . . . . . . 13  |-  ( k  =  N  ->  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
)
175174eqeq2d 2632 . . . . . . . . . . . 12  |-  ( k  =  N  ->  (
i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
) )
176164, 175rexeqbidv 3153 . . . . . . . . . . 11  |-  ( k  =  N  ->  ( E. j  e.  (
0 ... k ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  E. j  e.  ( 0 ... N
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
) )
177164, 176raleqbidv 3152 . . . . . . . . . 10  |-  ( k  =  N  ->  ( A. i  e.  (
0 ... k ) E. j  e.  ( 0 ... k ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
) )
178163, 177rabeqbidv 3195 . . . . . . . . 9  |-  ( k  =  N  ->  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... k
) )  X.  {
f  |  f : ( 1 ... k
)
-1-1-onto-> ( 1 ... k
) } )  | 
A. i  e.  ( 0 ... k ) E. j  e.  ( 0 ... k ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  =  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )
179178fveq2d 6195 . . . . . . . 8  |-  ( k  =  N  ->  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... k ) )  X.  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } )  |  A. i  e.  ( 0 ... k
) E. j  e.  ( 0 ... k
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  X.  { 0 } ) ) )  u.  ( ( ( k  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  =  (
# `  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } ) )
180179breq2d 4665 . . . . . . 7  |-  ( k  =  N  ->  (
2  ||  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... k ) )  X. 
{ f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k
) } )  | 
A. i  e.  ( 0 ... k ) E. j  e.  ( 0 ... k ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  <->  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } ) ) )
181180notbid 308 . . . . . 6  |-  ( k  =  N  ->  ( -.  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... k ) )  X.  { f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k ) } )  |  A. i  e.  ( 0 ... k
) E. j  e.  ( 0 ... k
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... k ) )  X.  { 0 } ) ) )  u.  ( ( ( k  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  <->  -.  2  ||  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  u.  (
( ( N  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) ) )
182181imbi2d 330 . . . . 5  |-  ( k  =  N  ->  (
( ph  ->  -.  2  ||  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... k ) )  X. 
{ f  |  f : ( 1 ... k ) -1-1-onto-> ( 1 ... k
) } )  | 
A. i  e.  ( 0 ... k ) E. j  e.  ( 0 ... k ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... k ) )  X. 
{ 0 } ) ) )  u.  (
( ( k  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) )  <->  ( ph  ->  -.  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } ) ) ) )
183 n2dvds1 15104 . . . . . . 7  |-  -.  2  ||  1
184 opex 4932 . . . . . . . . . 10  |-  <. (/) ,  (/) >.  e.  _V
185 hashsng 13159 . . . . . . . . . 10  |-  ( <. (/)
,  (/) >.  e.  _V  ->  ( # `  { <.
(/) ,  (/) >. } )  =  1 )
186184, 185ax-mp 5 . . . . . . . . 9  |-  ( # `  { <. (/) ,  (/) >. } )  =  1
187 nnuz 11723 . . . . . . . . . . . . . . . . 17  |-  NN  =  ( ZZ>= `  1 )
1881, 187syl6eleq 2711 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
189 eluzfz1 12348 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... N
) )
190188, 189syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  1  e.  ( 1 ... N ) )
191 poimirlem28.5 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  K  e.  NN )
192191nnnn0d 11351 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  K  e.  NN0 )
193 0elfz 12436 . . . . . . . . . . . . . . . 16  |-  ( K  e.  NN0  ->  0  e.  ( 0 ... K
) )
194 fconst6g 6094 . . . . . . . . . . . . . . . 16  |-  ( 0  e.  ( 0 ... K )  ->  (
( 1 ... N
)  X.  { 0 } ) : ( 1 ... N ) --> ( 0 ... K
) )
195192, 193, 1943syl 18 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 1 ... N )  X.  {
0 } ) : ( 1 ... N
) --> ( 0 ... K ) )
19670fvconst2 6469 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  ( 1 ... N )  ->  (
( ( 1 ... N )  X.  {
0 } ) ` 
1 )  =  0 )
197190, 196syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 1 ... N )  X. 
{ 0 } ) `
 1 )  =  0 )
198190, 195, 1973jca 1242 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1  e.  ( 1 ... N )  /\  ( ( 1 ... N )  X. 
{ 0 } ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( ( 1 ... N )  X. 
{ 0 } ) `
 1 )  =  0 ) )
199 nfv 1843 . . . . . . . . . . . . . . . 16  |-  F/ p
( ph  /\  (
1  e.  ( 1 ... N )  /\  ( ( 1 ... N )  X.  {
0 } ) : ( 1 ... N
) --> ( 0 ... K )  /\  (
( ( 1 ... N )  X.  {
0 } ) ` 
1 )  =  0 ) )
200 nfcsb1v 3549 . . . . . . . . . . . . . . . . 17  |-  F/_ p [_ ( ( 1 ... N )  X.  {
0 } )  /  p ]_ B
201200nfeq1 2778 . . . . . . . . . . . . . . . 16  |-  F/ p [_ ( ( 1 ... N )  X.  {
0 } )  /  p ]_ B  =  0
202199, 201nfim 1825 . . . . . . . . . . . . . . 15  |-  F/ p
( ( ph  /\  ( 1  e.  ( 1 ... N )  /\  ( ( 1 ... N )  X. 
{ 0 } ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( ( 1 ... N )  X. 
{ 0 } ) `
 1 )  =  0 ) )  ->  [_ ( ( 1 ... N )  X.  {
0 } )  /  p ]_ B  =  0 )
203 ovex 6678 . . . . . . . . . . . . . . . 16  |-  ( 1 ... N )  e. 
_V
204 snex 4908 . . . . . . . . . . . . . . . 16  |-  { 0 }  e.  _V
205203, 204xpex 6962 . . . . . . . . . . . . . . 15  |-  ( ( 1 ... N )  X.  { 0 } )  e.  _V
206 feq1 6026 . . . . . . . . . . . . . . . . . 18  |-  ( p  =  ( ( 1 ... N )  X. 
{ 0 } )  ->  ( p : ( 1 ... N
) --> ( 0 ... K )  <->  ( (
1 ... N )  X. 
{ 0 } ) : ( 1 ... N ) --> ( 0 ... K ) ) )
207 fveq1 6190 . . . . . . . . . . . . . . . . . . 19  |-  ( p  =  ( ( 1 ... N )  X. 
{ 0 } )  ->  ( p ` 
1 )  =  ( ( ( 1 ... N )  X.  {
0 } ) ` 
1 ) )
208207eqeq1d 2624 . . . . . . . . . . . . . . . . . 18  |-  ( p  =  ( ( 1 ... N )  X. 
{ 0 } )  ->  ( ( p `
 1 )  =  0  <->  ( ( ( 1 ... N )  X.  { 0 } ) `  1 )  =  0 ) )
209206, 2083anbi23d 1402 . . . . . . . . . . . . . . . . 17  |-  ( p  =  ( ( 1 ... N )  X. 
{ 0 } )  ->  ( ( 1  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K )  /\  ( p `  1
)  =  0 )  <-> 
( 1  e.  ( 1 ... N )  /\  ( ( 1 ... N )  X. 
{ 0 } ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( ( 1 ... N )  X. 
{ 0 } ) `
 1 )  =  0 ) ) )
210209anbi2d 740 . . . . . . . . . . . . . . . 16  |-  ( p  =  ( ( 1 ... N )  X. 
{ 0 } )  ->  ( ( ph  /\  ( 1  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K
)  /\  ( p `  1 )  =  0 ) )  <->  ( ph  /\  ( 1  e.  ( 1 ... N )  /\  ( ( 1 ... N )  X. 
{ 0 } ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( ( 1 ... N )  X. 
{ 0 } ) `
 1 )  =  0 ) ) ) )
211 csbeq1a 3542 . . . . . . . . . . . . . . . . 17  |-  ( p  =  ( ( 1 ... N )  X. 
{ 0 } )  ->  B  =  [_ ( ( 1 ... N )  X.  {
0 } )  /  p ]_ B )
212211eqeq1d 2624 . . . . . . . . . . . . . . . 16  |-  ( p  =  ( ( 1 ... N )  X. 
{ 0 } )  ->  ( B  =  0  <->  [_ ( ( 1 ... N )  X. 
{ 0 } )  /  p ]_ B  =  0 ) )
213210, 212imbi12d 334 . . . . . . . . . . . . . . 15  |-  ( p  =  ( ( 1 ... N )  X. 
{ 0 } )  ->  ( ( (
ph  /\  ( 1  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K )  /\  ( p `  1
)  =  0 ) )  ->  B  = 
0 )  <->  ( ( ph  /\  ( 1  e.  ( 1 ... N
)  /\  ( (
1 ... N )  X. 
{ 0 } ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( ( 1 ... N )  X. 
{ 0 } ) `
 1 )  =  0 ) )  ->  [_ ( ( 1 ... N )  X.  {
0 } )  /  p ]_ B  =  0 ) ) )
214 1ex 10035 . . . . . . . . . . . . . . . . 17  |-  1  e.  _V
215 eleq1 2689 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  1  ->  (
n  e.  ( 1 ... N )  <->  1  e.  ( 1 ... N
) ) )
216 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  1  ->  (
p `  n )  =  ( p ` 
1 ) )
217216eqeq1d 2624 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  1  ->  (
( p `  n
)  =  0  <->  (
p `  1 )  =  0 ) )
218215, 2173anbi13d 1401 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  1  ->  (
( n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K
)  /\  ( p `  n )  =  0 )  <->  ( 1  e.  ( 1 ... N
)  /\  p :
( 1 ... N
) --> ( 0 ... K )  /\  (
p `  1 )  =  0 ) ) )
219218anbi2d 740 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  1  ->  (
( ph  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K )  /\  ( p `  n
)  =  0 ) )  <->  ( ph  /\  ( 1  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K
)  /\  ( p `  1 )  =  0 ) ) ) )
220 breq2 4657 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  1  ->  ( B  <  n  <->  B  <  1 ) )
221219, 220imbi12d 334 . . . . . . . . . . . . . . . . 17  |-  ( n  =  1  ->  (
( ( ph  /\  ( n  e.  (
1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K )  /\  ( p `  n
)  =  0 ) )  ->  B  <  n )  <->  ( ( ph  /\  ( 1  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K
)  /\  ( p `  1 )  =  0 ) )  ->  B  <  1 ) ) )
222 poimirlem28.3 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  p :
( 1 ... N
) --> ( 0 ... K )  /\  (
p `  n )  =  0 ) )  ->  B  <  n
)
223214, 221, 222vtocl 3259 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( 1  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K )  /\  ( p `  1
)  =  0 ) )  ->  B  <  1 )
224 poimirlem28.2 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  p :
( 1 ... N
) --> ( 0 ... K ) )  ->  B  e.  ( 0 ... N ) )
225 elfznn0 12433 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  ( 0 ... N )  ->  B  e.  NN0 )
226 nn0lt10b 11439 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  NN0  ->  ( B  <  1  <->  B  = 
0 ) )
227224, 225, 2263syl 18 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  p :
( 1 ... N
) --> ( 0 ... K ) )  -> 
( B  <  1  <->  B  =  0 ) )
2282273ad2antr2 1227 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( 1  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K )  /\  ( p `  1
)  =  0 ) )  ->  ( B  <  1  <->  B  =  0
) )
229223, 228mpbid 222 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 1  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K )  /\  ( p `  1
)  =  0 ) )  ->  B  = 
0 )
230202, 205, 213, 229vtoclf 3258 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 1  e.  ( 1 ... N )  /\  (
( 1 ... N
)  X.  { 0 } ) : ( 1 ... N ) --> ( 0 ... K
)  /\  ( (
( 1 ... N
)  X.  { 0 } ) `  1
)  =  0 ) )  ->  [_ ( ( 1 ... N )  X.  { 0 } )  /  p ]_ B  =  0 )
231198, 230mpdan 702 . . . . . . . . . . . . 13  |-  ( ph  ->  [_ ( ( 1 ... N )  X. 
{ 0 } )  /  p ]_ B  =  0 )
232231eqcomd 2628 . . . . . . . . . . . 12  |-  ( ph  ->  0  =  [_ (
( 1 ... N
)  X.  { 0 } )  /  p ]_ B )
233232ralrimivw 2967 . . . . . . . . . . 11  |-  ( ph  ->  A. s  e.  { <.
(/) ,  (/) >. } 0  =  [_ ( ( 1 ... N )  X.  { 0 } )  /  p ]_ B )
234 rabid2 3118 . . . . . . . . . . 11  |-  ( {
<. (/) ,  (/) >. }  =  { s  e.  { <.
(/) ,  (/) >. }  | 
0  =  [_ (
( 1 ... N
)  X.  { 0 } )  /  p ]_ B }  <->  A. s  e.  { <. (/) ,  (/) >. } 0  =  [_ ( ( 1 ... N )  X.  { 0 } )  /  p ]_ B )
235233, 234sylibr 224 . . . . . . . . . 10  |-  ( ph  ->  { <. (/) ,  (/) >. }  =  { s  e.  { <.
(/) ,  (/) >. }  | 
0  =  [_ (
( 1 ... N
)  X.  { 0 } )  /  p ]_ B } )
236235fveq2d 6195 . . . . . . . . 9  |-  ( ph  ->  ( # `  { <.
(/) ,  (/) >. } )  =  ( # `  {
s  e.  { <. (/)
,  (/) >. }  |  0  =  [_ ( ( 1 ... N )  X.  { 0 } )  /  p ]_ B } ) )
237186, 236syl5eqr 2670 . . . . . . . 8  |-  ( ph  ->  1  =  ( # `  { s  e.  { <.
(/) ,  (/) >. }  | 
0  =  [_ (
( 1 ... N
)  X.  { 0 } )  /  p ]_ B } ) )
238237breq2d 4665 . . . . . . 7  |-  ( ph  ->  ( 2  ||  1  <->  2 
||  ( # `  {
s  e.  { <. (/)
,  (/) >. }  |  0  =  [_ ( ( 1 ... N )  X.  { 0 } )  /  p ]_ B } ) ) )
239183, 238mtbii 316 . . . . . 6  |-  ( ph  ->  -.  2  ||  ( # `
 { s  e. 
{ <. (/) ,  (/) >. }  | 
0  =  [_ (
( 1 ... N
)  X.  { 0 } )  /  p ]_ B } ) )
240239a1i 11 . . . . 5  |-  ( N  e.  NN0  ->  ( ph  ->  -.  2  ||  ( # `
 { s  e. 
{ <. (/) ,  (/) >. }  | 
0  =  [_ (
( 1 ... N
)  X.  { 0 } )  /  p ]_ B } ) ) )
241 2z 11409 . . . . . . . . . . . . 13  |-  2  e.  ZZ
242 fzfi 12771 . . . . . . . . . . . . . . . . 17  |-  ( 1 ... ( m  + 
1 ) )  e. 
Fin
243 mapfi 8262 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 0..^ K )  e.  Fin  /\  (
1 ... ( m  + 
1 ) )  e. 
Fin )  ->  (
( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  e. 
Fin )
24410, 242, 243mp2an 708 . . . . . . . . . . . . . . . 16  |-  ( ( 0..^ K )  ^m  ( 1 ... (
m  +  1 ) ) )  e.  Fin
245 ovex 6678 . . . . . . . . . . . . . . . . . . 19  |-  ( 1 ... ( m  + 
1 ) )  e. 
_V
246245, 245mapval 7869 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1 ... ( m  +  1 ) )  ^m  ( 1 ... ( m  +  1 ) ) )  =  { f  |  f : ( 1 ... ( m  +  1 ) ) --> ( 1 ... ( m  + 
1 ) ) }
247 mapfi 8262 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1 ... (
m  +  1 ) )  e.  Fin  /\  ( 1 ... (
m  +  1 ) )  e.  Fin )  ->  ( ( 1 ... ( m  +  1 ) )  ^m  (
1 ... ( m  + 
1 ) ) )  e.  Fin )
248242, 242, 247mp2an 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1 ... ( m  +  1 ) )  ^m  ( 1 ... ( m  +  1 ) ) )  e. 
Fin
249246, 248eqeltrri 2698 . . . . . . . . . . . . . . . . 17  |-  { f  |  f : ( 1 ... ( m  +  1 ) ) --> ( 1 ... (
m  +  1 ) ) }  e.  Fin
250 f1of 6137 . . . . . . . . . . . . . . . . . 18  |-  ( f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) )  ->  f :
( 1 ... (
m  +  1 ) ) --> ( 1 ... ( m  +  1 ) ) )
251250ss2abi 3674 . . . . . . . . . . . . . . . . 17  |-  { f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... ( m  +  1 ) ) }  C_  { f  |  f : ( 1 ... ( m  +  1 ) ) --> ( 1 ... (
m  +  1 ) ) }
252 ssfi 8180 . . . . . . . . . . . . . . . . 17  |-  ( ( { f  |  f : ( 1 ... ( m  +  1 ) ) --> ( 1 ... ( m  + 
1 ) ) }  e.  Fin  /\  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) }  C_  { f  |  f : ( 1 ... ( m  +  1 ) ) --> ( 1 ... (
m  +  1 ) ) } )  ->  { f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) }  e.  Fin )
253249, 251, 252mp2an 708 . . . . . . . . . . . . . . . 16  |-  { f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... ( m  +  1 ) ) }  e.  Fin
254 xpfi 8231 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  e.  Fin  /\  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) }  e.  Fin )  ->  ( ( ( 0..^ K )  ^m  ( 1 ... (
m  +  1 ) ) )  X.  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  e. 
Fin )
255244, 253, 254mp2an 708 . . . . . . . . . . . . . . 15  |-  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  e. 
Fin
256 rabfi 8185 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  e.  Fin  ->  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  e.  Fin )
257 hashcl 13147 . . . . . . . . . . . . . . 15  |-  ( { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  e.  Fin  ->  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  e.  NN0 )
258255, 256, 257mp2b 10 . . . . . . . . . . . . . 14  |-  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  e.  NN0
259258nn0zi 11402 . . . . . . . . . . . . 13  |-  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  e.  ZZ
260 rabfi 8185 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  e.  Fin  ->  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) }  e.  Fin )
261 hashcl 13147 . . . . . . . . . . . . . . 15  |-  ( { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) }  e.  Fin  ->  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } )  e.  NN0 )
262255, 260, 261mp2b 10 . . . . . . . . . . . . . 14  |-  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } )  e.  NN0
263262nn0zi 11402 . . . . . . . . . . . . 13  |-  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } )  e.  ZZ
264241, 259, 2633pm3.2i 1239 . . . . . . . . . . . 12  |-  ( 2  e.  ZZ  /\  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  e.  ZZ  /\  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } )  e.  ZZ )
265 nn0p1nn 11332 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN0  ->  ( m  +  1 )  e.  NN )
266265ad2antrl 764 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
( m  +  1 )  e.  NN )
267 uneq1 3760 . . . . . . . . . . . . . . . 16  |-  ( q  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  -> 
( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  =  ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) )
268267csbeq1d 3540 . . . . . . . . . . . . . . 15  |-  ( q  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  ->  [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
)
26970fconst 6091 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) : ( ( ( m  +  1 )  +  1 ) ... N ) --> { 0 }
270269jctr 565 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K )  -> 
( q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K
)  /\  ( (
( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) : ( ( ( m  +  1 )  +  1 ) ... N ) --> { 0 } ) )
271265nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  e.  NN0  ->  ( m  +  1 )  e.  RR )
272271ltp1d 10954 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m  e.  NN0  ->  ( m  +  1 )  < 
( ( m  + 
1 )  +  1 ) )
273 fzdisj 12368 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( m  +  1 )  <  ( ( m  +  1 )  +  1 )  ->  (
( 1 ... (
m  +  1 ) )  i^i  ( ( ( m  +  1 )  +  1 ) ... N ) )  =  (/) )
274272, 273syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  e.  NN0  ->  ( ( 1 ... ( m  +  1 ) )  i^i  ( ( ( m  +  1 )  +  1 ) ... N ) )  =  (/) )
275 fun 6066 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K
)  /\  ( (
( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) : ( ( ( m  +  1 )  +  1 ) ... N ) --> { 0 } )  /\  ( ( 1 ... ( m  +  1 ) )  i^i  (
( ( m  + 
1 )  +  1 ) ... N ) )  =  (/) )  -> 
( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) : ( ( 1 ... ( m  +  1 ) )  u.  (
( ( m  + 
1 )  +  1 ) ... N ) ) --> ( ( 0 ... K )  u. 
{ 0 } ) )
276270, 274, 275syl2anr 495 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( m  e.  NN0  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  ->  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( ( 1 ... ( m  + 
1 ) )  u.  ( ( ( m  +  1 )  +  1 ) ... N
) ) --> ( ( 0 ... K )  u.  { 0 } ) )
277276adantlr 751 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( m  e.  NN0  /\  m  <  N )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K
) )  ->  (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) ) : ( ( 1 ... (
m  +  1 ) )  u.  ( ( ( m  +  1 )  +  1 ) ... N ) ) --> ( ( 0 ... K )  u.  {
0 } ) )
278277adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( (
m  e.  NN0  /\  m  <  N )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) ) )  ->  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( ( 1 ... ( m  + 
1 ) )  u.  ( ( ( m  +  1 )  +  1 ) ... N
) ) --> ( ( 0 ... K )  u.  { 0 } ) )
279265peano2nnd 11037 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( m  e.  NN0  ->  ( ( m  +  1 )  +  1 )  e.  NN )
280279, 187syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  e.  NN0  ->  ( ( m  +  1 )  +  1 )  e.  ( ZZ>= `  1 )
)
281280ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
( ( m  + 
1 )  +  1 )  e.  ( ZZ>= ` 
1 ) )
282 nn0z 11400 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( m  e.  NN0  ->  m  e.  ZZ )
2831nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  N  e.  ZZ )
284 zltp1le 11427 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( m  e.  ZZ  /\  N  e.  ZZ )  ->  ( m  <  N  <->  ( m  +  1 )  <_  N ) )
285282, 283, 284syl2anr 495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( m  <  N  <->  ( m  + 
1 )  <_  N
) )
286285biimpa 501 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  m  <  N )  ->  (
m  +  1 )  <_  N )
287286anasss 679 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
( m  +  1 )  <_  N )
288282peano2zd 11485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( m  e.  NN0  ->  ( m  +  1 )  e.  ZZ )
289288adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( m  e.  NN0  /\  m  <  N )  -> 
( m  +  1 )  e.  ZZ )
290 eluz 11701 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( m  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  ( m  + 
1 ) )  <->  ( m  +  1 )  <_  N ) )
291289, 283, 290syl2anr 495 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
( N  e.  (
ZZ>= `  ( m  + 
1 ) )  <->  ( m  +  1 )  <_  N ) )
292287, 291mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  ->  N  e.  ( ZZ>= `  ( m  +  1
) ) )
293 fzsplit2 12366 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( m  + 
1 )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ( ZZ>= `  ( m  +  1 ) ) )  ->  ( 1 ... N )  =  ( ( 1 ... ( m  +  1 ) )  u.  (
( ( m  + 
1 )  +  1 ) ... N ) ) )
294281, 292, 293syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
( 1 ... N
)  =  ( ( 1 ... ( m  +  1 ) )  u.  ( ( ( m  +  1 )  +  1 ) ... N ) ) )
295294eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
( ( 1 ... ( m  +  1 ) )  u.  (
( ( m  + 
1 )  +  1 ) ... N ) )  =  ( 1 ... N ) )
296192, 193syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  0  e.  ( 0 ... K ) )
297296snssd 4340 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  { 0 }  C_  ( 0 ... K
) )
298 ssequn2 3786 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( { 0 }  C_  (
0 ... K )  <->  ( (
0 ... K )  u. 
{ 0 } )  =  ( 0 ... K ) )
299297, 298sylib 208 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( 0 ... K )  u.  {
0 } )  =  ( 0 ... K
) )
300299adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
( ( 0 ... K )  u.  {
0 } )  =  ( 0 ... K
) )
301295, 300feq23d 6040 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( ( 1 ... ( m  + 
1 ) )  u.  ( ( ( m  +  1 )  +  1 ) ... N
) ) --> ( ( 0 ... K )  u.  { 0 } )  <->  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) )
302301adantrr 753 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( (
m  e.  NN0  /\  m  <  N )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) ) )  ->  ( (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) ) : ( ( 1 ... (
m  +  1 ) )  u.  ( ( ( m  +  1 )  +  1 ) ... N ) ) --> ( ( 0 ... K )  u.  {
0 } )  <->  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) )
303278, 302mpbid 222 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( (
m  e.  NN0  /\  m  <  N )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) ) )  ->  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) )
304 nfv 1843 . . . . . . . . . . . . . . . . . . . . 21  |-  F/ p
( ph  /\  (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K
) )
305 nfcsb1v 3549 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/_ p [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B
306305nfel1 2779 . . . . . . . . . . . . . . . . . . . . 21  |-  F/ p [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  e.  ( 0 ... N )
307304, 306nfim 1825 . . . . . . . . . . . . . . . . . . . 20  |-  F/ p
( ( ph  /\  ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) : ( 1 ... N
) --> ( 0 ... K ) )  ->  [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  e.  ( 0 ... N ) )
308 vex 3203 . . . . . . . . . . . . . . . . . . . . 21  |-  q  e. 
_V
309 ovex 6678 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( m  +  1 )  +  1 ) ... N )  e. 
_V
310309, 204xpex 6962 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } )  e.  _V
311308, 310unex 6956 . . . . . . . . . . . . . . . . . . . 20  |-  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) )  e.  _V
312 feq1 6026 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( p : ( 1 ... N
) --> ( 0 ... K )  <->  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) ) )
313312anbi2d 740 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( ( ph  /\  p : ( 1 ... N ) --> ( 0 ... K ) )  <->  ( ph  /\  ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) : ( 1 ... N
) --> ( 0 ... K ) ) ) )
314 csbeq1a 3542 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  B  =  [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B )
315314eleq1d 2686 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( B  e.  ( 0 ... N
)  <->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  e.  ( 0 ... N
) ) )
316313, 315imbi12d 334 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( ( (
ph  /\  p :
( 1 ... N
) --> ( 0 ... K ) )  ->  B  e.  ( 0 ... N ) )  <-> 
( ( ph  /\  ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) : ( 1 ... N
) --> ( 0 ... K ) )  ->  [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  e.  ( 0 ... N ) ) ) )
317307, 311, 316, 224vtoclf 3258 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) )  ->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  e.  ( 0 ... N
) )
318303, 317syldan 487 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
m  e.  NN0  /\  m  <  N )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) ) )  ->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) )  /  p ]_ B  e.  ( 0 ... N ) )
319318anassrs 680 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  m  <  N ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K
) )  ->  [_ (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B  e.  (
0 ... N ) )
320 elfznn0 12433 . . . . . . . . . . . . . . . . 17  |-  ( [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  e.  ( 0 ... N )  ->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  e.  NN0 )
321319, 320syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  m  <  N ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K
) )  ->  [_ (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B  e.  NN0 )
322265nnnn0d 11351 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  NN0  ->  ( m  +  1 )  e. 
NN0 )
323322adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( m  e.  NN0  /\  m  <  N )  -> 
( m  +  1 )  e.  NN0 )
324323ad2antlr 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  m  <  N ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K
) )  ->  (
m  +  1 )  e.  NN0 )
325 leloe 10124 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( m  +  1 )  e.  RR  /\  N  e.  RR )  ->  ( ( m  + 
1 )  <_  N  <->  ( ( m  +  1 )  <  N  \/  ( m  +  1
)  =  N ) ) )
326271, 3, 325syl2anr 495 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
m  +  1 )  <_  N  <->  ( (
m  +  1 )  <  N  \/  (
m  +  1 )  =  N ) ) )
327285, 326bitrd 268 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( m  <  N  <->  ( ( m  +  1 )  < 
N  \/  ( m  +  1 )  =  N ) ) )
328327biimpd 219 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( m  <  N  ->  ( (
m  +  1 )  <  N  \/  (
m  +  1 )  =  N ) ) )
329328imdistani 726 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  m  <  N )  ->  (
( ph  /\  m  e.  NN0 )  /\  (
( m  +  1 )  <  N  \/  ( m  +  1
)  =  N ) ) )
330329anasss 679 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
( ( ph  /\  m  e.  NN0 )  /\  ( ( m  + 
1 )  <  N  \/  ( m  +  1 )  =  N ) ) )
331 simplll 798 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  <  N
)  ->  ph )
332279nnge1d 11063 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m  e.  NN0  ->  1  <_ 
( ( m  + 
1 )  +  1 ) )
333332ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
m  +  1 )  <  N )  -> 
1  <_  ( (
m  +  1 )  +  1 ) )
334 zltp1le 11427 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( m  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( m  + 
1 )  <  N  <->  ( ( m  +  1 )  +  1 )  <_  N ) )
335288, 283, 334syl2anr 495 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
m  +  1 )  <  N  <->  ( (
m  +  1 )  +  1 )  <_  N ) )
336335biimpa 501 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
m  +  1 )  <  N )  -> 
( ( m  + 
1 )  +  1 )  <_  N )
337288peano2zd 11485 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  e.  NN0  ->  ( ( m  +  1 )  +  1 )  e.  ZZ )
338 1z 11407 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  1  e.  ZZ
339 elfz 12332 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( m  + 
1 )  +  1 )  e.  ZZ  /\  1  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( m  + 
1 )  +  1 )  e.  ( 1 ... N )  <->  ( 1  <_  ( ( m  +  1 )  +  1 )  /\  (
( m  +  1 )  +  1 )  <_  N ) ) )
340338, 339mp3an2 1412 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( m  + 
1 )  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( m  +  1 )  +  1 )  e.  ( 1 ... N )  <-> 
( 1  <_  (
( m  +  1 )  +  1 )  /\  ( ( m  +  1 )  +  1 )  <_  N
) ) )
341337, 283, 340syl2anr 495 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
( m  +  1 )  +  1 )  e.  ( 1 ... N )  <->  ( 1  <_  ( ( m  +  1 )  +  1 )  /\  (
( m  +  1 )  +  1 )  <_  N ) ) )
342341adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
m  +  1 )  <  N )  -> 
( ( ( m  +  1 )  +  1 )  e.  ( 1 ... N )  <-> 
( 1  <_  (
( m  +  1 )  +  1 )  /\  ( ( m  +  1 )  +  1 )  <_  N
) ) )
343333, 336, 342mpbir2and 957 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
m  +  1 )  <  N )  -> 
( ( m  + 
1 )  +  1 )  e.  ( 1 ... N ) )
344343adantlr 751 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  <  N
)  ->  ( (
m  +  1 )  +  1 )  e.  ( 1 ... N
) )
345 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  e.  NN0  ->  m  e.  RR )
346345ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
m  +  1 )  <  N )  ->  m  e.  RR )
347271ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
m  +  1 )  <  N )  -> 
( m  +  1 )  e.  RR )
3483ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
m  +  1 )  <  N )  ->  N  e.  RR )
349345ltp1d 10954 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  e.  NN0  ->  m  < 
( m  +  1 ) )
350349ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
m  +  1 )  <  N )  ->  m  <  ( m  + 
1 ) )
351 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
m  +  1 )  <  N )  -> 
( m  +  1 )  <  N )
352346, 347, 348, 350, 351lttrd 10198 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
m  +  1 )  <  N )  ->  m  <  N )
353352adantlr 751 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  <  N
)  ->  m  <  N )
354 anass 681 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  m  <  N )  <->  ( ph  /\  ( m  e.  NN0  /\  m  <  N ) ) )
355303anassrs 680 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  m  <  N ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K
) )  ->  (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K
) )
356354, 355sylanb 489 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  m  <  N )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  ->  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) )
357356an32s 846 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  m  <  N
)  ->  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) )
358353, 357syldan 487 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  <  N
)  ->  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) )
359 ffn 6045 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K )  -> 
q  Fn  ( 1 ... ( m  + 
1 ) ) )
360359ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  <  N
)  ->  q  Fn  ( 1 ... (
m  +  1 ) ) )
361274ad3antlr 767 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  <  N
)  ->  ( (
1 ... ( m  + 
1 ) )  i^i  ( ( ( m  +  1 )  +  1 ) ... N
) )  =  (/) )
362 eluz 11701 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( m  + 
1 )  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  ( ( m  +  1 )  +  1 ) )  <->  ( (
m  +  1 )  +  1 )  <_  N ) )
363337, 283, 362syl2anr 495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( N  e.  ( ZZ>= `  ( (
m  +  1 )  +  1 ) )  <-> 
( ( m  + 
1 )  +  1 )  <_  N )
)
364363adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
m  +  1 )  <  N )  -> 
( N  e.  (
ZZ>= `  ( ( m  +  1 )  +  1 ) )  <->  ( (
m  +  1 )  +  1 )  <_  N ) )
365336, 364mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
m  +  1 )  <  N )  ->  N  e.  ( ZZ>= `  ( ( m  + 
1 )  +  1 ) ) )
366 eluzfz1 12348 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  ( ZZ>= `  (
( m  +  1 )  +  1 ) )  ->  ( (
m  +  1 )  +  1 )  e.  ( ( ( m  +  1 )  +  1 ) ... N
) )
367365, 366syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
m  +  1 )  <  N )  -> 
( ( m  + 
1 )  +  1 )  e.  ( ( ( m  +  1 )  +  1 ) ... N ) )
368367adantlr 751 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  <  N
)  ->  ( (
m  +  1 )  +  1 )  e.  ( ( ( m  +  1 )  +  1 ) ... N
) )
369 fnconstg 6093 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 0  e.  _V  ->  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } )  Fn  (
( ( m  + 
1 )  +  1 ) ... N ) )
37070, 369ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } )  Fn  ( ( ( m  +  1 )  +  1 ) ... N )
371 fvun2 6270 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( q  Fn  ( 1 ... ( m  + 
1 ) )  /\  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } )  Fn  ( ( ( m  +  1 )  +  1 ) ... N
)  /\  ( (
( 1 ... (
m  +  1 ) )  i^i  ( ( ( m  +  1 )  +  1 ) ... N ) )  =  (/)  /\  (
( m  +  1 )  +  1 )  e.  ( ( ( m  +  1 )  +  1 ) ... N ) ) )  ->  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) ) `  ( ( m  +  1 )  +  1 ) )  =  ( ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) `  ( ( m  +  1 )  +  1 ) ) )
372370, 371mp3an2 1412 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( q  Fn  ( 1 ... ( m  + 
1 ) )  /\  ( ( ( 1 ... ( m  + 
1 ) )  i^i  ( ( ( m  +  1 )  +  1 ) ... N
) )  =  (/)  /\  ( ( m  + 
1 )  +  1 )  e.  ( ( ( m  +  1 )  +  1 ) ... N ) ) )  ->  ( (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) ) `  (
( m  +  1 )  +  1 ) )  =  ( ( ( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) `  (
( m  +  1 )  +  1 ) ) )
373360, 361, 368, 372syl12anc 1324 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  <  N
)  ->  ( (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) ) `  (
( m  +  1 )  +  1 ) )  =  ( ( ( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) `  (
( m  +  1 )  +  1 ) ) )
37470fvconst2 6469 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( m  +  1 )  +  1 )  e.  ( ( ( m  +  1 )  +  1 ) ... N )  ->  (
( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) `  ( ( m  + 
1 )  +  1 ) )  =  0 )
375368, 374syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  <  N
)  ->  ( (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) `  (
( m  +  1 )  +  1 ) )  =  0 )
376373, 375eqtrd 2656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  <  N
)  ->  ( (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) ) `  (
( m  +  1 )  +  1 ) )  =  0 )
377 nfv 1843 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ p
( ph  /\  (
( ( m  + 
1 )  +  1 )  e.  ( 1 ... N )  /\  ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) : ( 1 ... N
) --> ( 0 ... K )  /\  (
( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) `  ( ( m  + 
1 )  +  1 ) )  =  0 ) )
378 nfcv 2764 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F/_ p  <
379 nfcv 2764 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F/_ p
( ( m  + 
1 )  +  1 )
380305, 378, 379nfbr 4699 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ p [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <  (
( m  +  1 )  +  1 )
381377, 380nfim 1825 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/ p
( ( ph  /\  ( ( ( m  +  1 )  +  1 )  e.  ( 1 ... N )  /\  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) `
 ( ( m  +  1 )  +  1 ) )  =  0 ) )  ->  [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <  (
( m  +  1 )  +  1 ) )
382 fveq1 6190 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( p `  ( ( m  + 
1 )  +  1 ) )  =  ( ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) `  ( ( m  + 
1 )  +  1 ) ) )
383382eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( ( p `
 ( ( m  +  1 )  +  1 ) )  =  0  <->  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) ) `  ( ( m  +  1 )  +  1 ) )  =  0 ) )
384312, 3833anbi23d 1402 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( ( ( ( m  +  1 )  +  1 )  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K )  /\  ( p `  (
( m  +  1 )  +  1 ) )  =  0 )  <-> 
( ( ( m  +  1 )  +  1 )  e.  ( 1 ... N )  /\  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) `
 ( ( m  +  1 )  +  1 ) )  =  0 ) ) )
385384anbi2d 740 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( ( ph  /\  ( ( ( m  +  1 )  +  1 )  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K
)  /\  ( p `  ( ( m  + 
1 )  +  1 ) )  =  0 ) )  <->  ( ph  /\  ( ( ( m  +  1 )  +  1 )  e.  ( 1 ... N )  /\  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) `
 ( ( m  +  1 )  +  1 ) )  =  0 ) ) ) )
386314breq1d 4663 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( B  < 
( ( m  + 
1 )  +  1 )  <->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  <  ( ( m  + 
1 )  +  1 ) ) )
387385, 386imbi12d 334 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( ( (
ph  /\  ( (
( m  +  1 )  +  1 )  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K )  /\  ( p `  (
( m  +  1 )  +  1 ) )  =  0 ) )  ->  B  <  ( ( m  +  1 )  +  1 ) )  <->  ( ( ph  /\  ( ( ( m  +  1 )  +  1 )  e.  ( 1 ... N )  /\  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) `
 ( ( m  +  1 )  +  1 ) )  =  0 ) )  ->  [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <  (
( m  +  1 )  +  1 ) ) ) )
388 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m  +  1 )  +  1 )  e. 
_V
389 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =  ( ( m  +  1 )  +  1 )  ->  (
n  e.  ( 1 ... N )  <->  ( (
m  +  1 )  +  1 )  e.  ( 1 ... N
) ) )
390 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( n  =  ( ( m  +  1 )  +  1 )  ->  (
p `  n )  =  ( p `  ( ( m  + 
1 )  +  1 ) ) )
391390eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =  ( ( m  +  1 )  +  1 )  ->  (
( p `  n
)  =  0  <->  (
p `  ( (
m  +  1 )  +  1 ) )  =  0 ) )
392389, 3913anbi13d 1401 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  =  ( ( m  +  1 )  +  1 )  ->  (
( n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K
)  /\  ( p `  n )  =  0 )  <->  ( ( ( m  +  1 )  +  1 )  e.  ( 1 ... N
)  /\  p :
( 1 ... N
) --> ( 0 ... K )  /\  (
p `  ( (
m  +  1 )  +  1 ) )  =  0 ) ) )
393392anbi2d 740 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  ( ( m  +  1 )  +  1 )  ->  (
( ph  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K )  /\  ( p `  n
)  =  0 ) )  <->  ( ph  /\  ( ( ( m  +  1 )  +  1 )  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K
)  /\  ( p `  ( ( m  + 
1 )  +  1 ) )  =  0 ) ) ) )
394 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  ( ( m  +  1 )  +  1 )  ->  ( B  <  n  <->  B  <  ( ( m  +  1 )  +  1 ) ) )
395393, 394imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  =  ( ( m  +  1 )  +  1 )  ->  (
( ( ph  /\  ( n  e.  (
1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K )  /\  ( p `  n
)  =  0 ) )  ->  B  <  n )  <->  ( ( ph  /\  ( ( ( m  +  1 )  +  1 )  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K
)  /\  ( p `  ( ( m  + 
1 )  +  1 ) )  =  0 ) )  ->  B  <  ( ( m  + 
1 )  +  1 ) ) ) )
396388, 395, 222vtocl 3259 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( (
( m  +  1 )  +  1 )  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K )  /\  ( p `  (
( m  +  1 )  +  1 ) )  =  0 ) )  ->  B  <  ( ( m  +  1 )  +  1 ) )
397381, 311, 387, 396vtoclf 3258 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( (
( m  +  1 )  +  1 )  e.  ( 1 ... N )  /\  (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K
)  /\  ( (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) ) `  (
( m  +  1 )  +  1 ) )  =  0 ) )  ->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) )  /  p ]_ B  <  ( ( m  +  1 )  +  1 ) )
398331, 344, 358, 376, 397syl13anc 1328 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  <  N
)  ->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) )  /  p ]_ B  <  ( ( m  +  1 )  +  1 ) )
399354, 319sylanb 489 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  m  <  N )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  ->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  e.  ( 0 ... N
) )
400399an32s 846 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  m  <  N
)  ->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) )  /  p ]_ B  e.  ( 0 ... N ) )
401 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  e.  ( 0 ... N )  ->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  e.  ZZ )
402400, 401syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  m  <  N
)  ->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) )  /  p ]_ B  e.  ZZ )
403353, 402syldan 487 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  <  N
)  ->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) )  /  p ]_ B  e.  ZZ )
404288ad3antlr 767 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  <  N
)  ->  ( m  +  1 )  e.  ZZ )
405 zleltp1 11428 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
[_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  e.  ZZ  /\  ( m  +  1 )  e.  ZZ )  ->  ( [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <_  (
m  +  1 )  <->  [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <  (
( m  +  1 )  +  1 ) ) )
406403, 404, 405syl2anc 693 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  <  N
)  ->  ( [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <_  (
m  +  1 )  <->  [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <  (
( m  +  1 )  +  1 ) ) )
407398, 406mpbird 247 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  <  N
)  ->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) )  /  p ]_ B  <_  ( m  + 
1 ) )
408349ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  ->  m  <  (
m  +  1 ) )
409 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m  +  1 )  =  N  ->  (
m  <  ( m  +  1 )  <->  m  <  N ) )
410409biimpac 503 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( m  <  ( m  +  1 )  /\  ( m  +  1
)  =  N )  ->  m  <  N
)
411408, 410sylan 488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  =  N )  ->  m  <  N )
412 elfzle2 12345 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  e.  ( 0 ... N )  ->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  <_  N )
413400, 412syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  m  <  N
)  ->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) )  /  p ]_ B  <_  N )
414411, 413syldan 487 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  =  N )  ->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) )  /  p ]_ B  <_  N )
415 simpr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  =  N )  ->  ( m  +  1 )  =  N )
416414, 415breqtrrd 4681 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( m  + 
1 )  =  N )  ->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) )  /  p ]_ B  <_  ( m  + 
1 ) )
417407, 416jaodan 826 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) )  /\  ( ( m  +  1 )  < 
N  \/  ( m  +  1 )  =  N ) )  ->  [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <_  (
m  +  1 ) )
418417an32s 846 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  ( ( m  + 
1 )  <  N  \/  ( m  +  1 )  =  N ) )  /\  q : ( 1 ... (
m  +  1 ) ) --> ( 0 ... K ) )  ->  [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <_  (
m  +  1 ) )
419330, 418sylan 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  m  <  N ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K
) )  ->  [_ (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B  <_  ( m  +  1 ) )
420 elfz2nn0 12431 . . . . . . . . . . . . . . . 16  |-  ( [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  e.  ( 0 ... ( m  +  1 ) )  <-> 
( [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  e.  NN0  /\  ( m  +  1 )  e. 
NN0  /\  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) )  /  p ]_ B  <_  ( m  + 
1 ) ) )
421321, 324, 419, 420syl3anbrc 1246 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  m  <  N ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K
) )  ->  [_ (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B  e.  (
0 ... ( m  + 
1 ) ) )
422 fzss2 12381 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ( ZZ>= `  (
m  +  1 ) )  ->  ( 1 ... ( m  + 
1 ) )  C_  ( 1 ... N
) )
423292, 422syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
( 1 ... (
m  +  1 ) )  C_  ( 1 ... N ) )
424423sselda 3603 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  m  <  N ) )  /\  n  e.  ( 1 ... ( m  +  1 ) ) )  ->  n  e.  ( 1 ... N
) )
4254243ad2antr1 1226 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  m  <  N ) )  /\  ( n  e.  ( 1 ... (
m  +  1 ) )  /\  q : ( 1 ... (
m  +  1 ) ) --> ( 0 ... K )  /\  (
q `  n )  =  0 ) )  ->  n  e.  ( 1 ... N ) )
4263553ad2antr2 1227 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  m  <  N ) )  /\  ( n  e.  ( 1 ... (
m  +  1 ) )  /\  q : ( 1 ... (
m  +  1 ) ) --> ( 0 ... K )  /\  (
q `  n )  =  0 ) )  ->  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K ) )
427359ad2antll 765 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
n  e.  ( 1 ... ( m  + 
1 ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) ) )  ->  q  Fn  ( 1 ... (
m  +  1 ) ) )
428274ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
n  e.  ( 1 ... ( m  + 
1 ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) ) )  ->  ( (
1 ... ( m  + 
1 ) )  i^i  ( ( ( m  +  1 )  +  1 ) ... N
) )  =  (/) )
429 simprl 794 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
n  e.  ( 1 ... ( m  + 
1 ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) ) )  ->  n  e.  ( 1 ... (
m  +  1 ) ) )
430 fvun1 6269 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( q  Fn  ( 1 ... ( m  + 
1 ) )  /\  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } )  Fn  ( ( ( m  +  1 )  +  1 ) ... N
)  /\  ( (
( 1 ... (
m  +  1 ) )  i^i  ( ( ( m  +  1 )  +  1 ) ... N ) )  =  (/)  /\  n  e.  ( 1 ... (
m  +  1 ) ) ) )  -> 
( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) `
 n )  =  ( q `  n
) )
431370, 430mp3an2 1412 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( q  Fn  ( 1 ... ( m  + 
1 ) )  /\  ( ( ( 1 ... ( m  + 
1 ) )  i^i  ( ( ( m  +  1 )  +  1 ) ... N
) )  =  (/)  /\  n  e.  ( 1 ... ( m  + 
1 ) ) ) )  ->  ( (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) ) `  n
)  =  ( q `
 n ) )
432427, 428, 429, 431syl12anc 1324 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
n  e.  ( 1 ... ( m  + 
1 ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K ) ) )  ->  ( (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) ) `  n
)  =  ( q `
 n ) )
433432adantlrr 757 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  m  <  N ) )  /\  ( n  e.  ( 1 ... (
m  +  1 ) )  /\  q : ( 1 ... (
m  +  1 ) ) --> ( 0 ... K ) ) )  ->  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) ) `  n )  =  ( q `  n ) )
4344333adantr3 1222 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  m  <  N ) )  /\  ( n  e.  ( 1 ... (
m  +  1 ) )  /\  q : ( 1 ... (
m  +  1 ) ) --> ( 0 ... K )  /\  (
q `  n )  =  0 ) )  ->  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) ) `  n )  =  ( q `  n ) )
435 simpr3 1069 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  m  <  N ) )  /\  ( n  e.  ( 1 ... (
m  +  1 ) )  /\  q : ( 1 ... (
m  +  1 ) ) --> ( 0 ... K )  /\  (
q `  n )  =  0 ) )  ->  ( q `  n )  =  0 )
436434, 435eqtrd 2656 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  m  <  N ) )  /\  ( n  e.  ( 1 ... (
m  +  1 ) )  /\  q : ( 1 ... (
m  +  1 ) ) --> ( 0 ... K )  /\  (
q `  n )  =  0 ) )  ->  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) ) `  n )  =  0 )
437425, 426, 4363jca 1242 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  m  <  N ) )  /\  ( n  e.  ( 1 ... (
m  +  1 ) )  /\  q : ( 1 ... (
m  +  1 ) ) --> ( 0 ... K )  /\  (
q `  n )  =  0 ) )  ->  ( n  e.  ( 1 ... N
)  /\  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) `
 n )  =  0 ) )
438 nfv 1843 . . . . . . . . . . . . . . . . . . 19  |-  F/ p
( ph  /\  (
n  e.  ( 1 ... N )  /\  ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) : ( 1 ... N
) --> ( 0 ... K )  /\  (
( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) `  n )  =  0 ) )
439 nfcv 2764 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ p n
440305, 378, 439nfbr 4699 . . . . . . . . . . . . . . . . . . 19  |-  F/ p [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <  n
441438, 440nfim 1825 . . . . . . . . . . . . . . . . . 18  |-  F/ p
( ( ph  /\  ( n  e.  (
1 ... N )  /\  ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) : ( 1 ... N
) --> ( 0 ... K )  /\  (
( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) `  n )  =  0 ) )  ->  [_ (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B  <  n )
442 fveq1 6190 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( p `  n )  =  ( ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) `  n ) )
443442eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( ( p `
 n )  =  0  <->  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) ) `  n )  =  0 ) )
444312, 4433anbi23d 1402 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( ( n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K )  /\  ( p `  n
)  =  0 )  <-> 
( n  e.  ( 1 ... N )  /\  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) `
 n )  =  0 ) ) )
445444anbi2d 740 . . . . . . . . . . . . . . . . . . 19  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( ( ph  /\  ( n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K
)  /\  ( p `  n )  =  0 ) )  <->  ( ph  /\  ( n  e.  ( 1 ... N )  /\  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) `
 n )  =  0 ) ) ) )
446314breq1d 4663 . . . . . . . . . . . . . . . . . . 19  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( B  < 
n  <->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  <  n ) )
447445, 446imbi12d 334 . . . . . . . . . . . . . . . . . 18  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  p :
( 1 ... N
) --> ( 0 ... K )  /\  (
p `  n )  =  0 ) )  ->  B  <  n
)  <->  ( ( ph  /\  ( n  e.  ( 1 ... N )  /\  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) `
 n )  =  0 ) )  ->  [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <  n
) ) )
448441, 311, 447, 222vtoclf 3258 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) `
 n )  =  0 ) )  ->  [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <  n
)
449448adantlr 751 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  m  <  N ) )  /\  ( n  e.  ( 1 ... N
)  /\  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) `
 n )  =  0 ) )  ->  [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <  n
)
450437, 449syldan 487 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  m  <  N ) )  /\  ( n  e.  ( 1 ... (
m  +  1 ) )  /\  q : ( 1 ... (
m  +  1 ) ) --> ( 0 ... K )  /\  (
q `  n )  =  0 ) )  ->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  <  n )
451 simp1 1061 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( 1 ... ( m  + 
1 ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K )  /\  ( q `  n
)  =  K )  ->  n  e.  ( 1 ... ( m  +  1 ) ) )
452424anasss 679 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( (
m  e.  NN0  /\  m  <  N )  /\  n  e.  ( 1 ... ( m  + 
1 ) ) ) )  ->  n  e.  ( 1 ... N
) )
453451, 452sylanr2 685 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
m  e.  NN0  /\  m  <  N )  /\  ( n  e.  (
1 ... ( m  + 
1 ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K )  /\  ( q `  n
)  =  K ) ) )  ->  n  e.  ( 1 ... N
) )
454 simp2 1062 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( 1 ... ( m  + 
1 ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K )  /\  ( q `  n
)  =  K )  ->  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K
) )
455454, 303sylanr2 685 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
m  e.  NN0  /\  m  <  N )  /\  ( n  e.  (
1 ... ( m  + 
1 ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K )  /\  ( q `  n
)  =  K ) ) )  ->  (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) ) : ( 1 ... N ) --> ( 0 ... K
) )
4564323adantr3 1222 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
n  e.  ( 1 ... ( m  + 
1 ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K )  /\  ( q `  n
)  =  K ) )  ->  ( (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) ) `  n
)  =  ( q `
 n ) )
457 simpr3 1069 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
n  e.  ( 1 ... ( m  + 
1 ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K )  /\  ( q `  n
)  =  K ) )  ->  ( q `  n )  =  K )
458456, 457eqtrd 2656 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
n  e.  ( 1 ... ( m  + 
1 ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K )  /\  ( q `  n
)  =  K ) )  ->  ( (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) ) `  n
)  =  K )
459458anasss 679 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( m  e.  NN0  /\  ( n  e.  ( 1 ... ( m  +  1 ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K )  /\  ( q `  n
)  =  K ) ) )  ->  (
( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) `  n )  =  K )
460459adantrlr 759 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
m  e.  NN0  /\  m  <  N )  /\  ( n  e.  (
1 ... ( m  + 
1 ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K )  /\  ( q `  n
)  =  K ) ) )  ->  (
( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) `  n )  =  K )
461453, 455, 4603jca 1242 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
m  e.  NN0  /\  m  <  N )  /\  ( n  e.  (
1 ... ( m  + 
1 ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K )  /\  ( q `  n
)  =  K ) ) )  ->  (
n  e.  ( 1 ... N )  /\  ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) : ( 1 ... N
) --> ( 0 ... K )  /\  (
( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) `  n )  =  K ) )
462 nfv 1843 . . . . . . . . . . . . . . . . . . 19  |-  F/ p
( ph  /\  (
n  e.  ( 1 ... N )  /\  ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) : ( 1 ... N
) --> ( 0 ... K )  /\  (
( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) `  n )  =  K ) )
463 nfcv 2764 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ p
( n  -  1 )
464305, 463nfne 2894 . . . . . . . . . . . . . . . . . . 19  |-  F/ p [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  =/=  (
n  -  1 )
465462, 464nfim 1825 . . . . . . . . . . . . . . . . . 18  |-  F/ p
( ( ph  /\  ( n  e.  (
1 ... N )  /\  ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) : ( 1 ... N
) --> ( 0 ... K )  /\  (
( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) ) `  n )  =  K ) )  ->  [_ (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B  =/=  (
n  -  1 ) )
466442eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( ( p `
 n )  =  K  <->  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X. 
{ 0 } ) ) `  n )  =  K ) )
467312, 4663anbi23d 1402 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( ( n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K )  /\  ( p `  n
)  =  K )  <-> 
( n  e.  ( 1 ... N )  /\  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) `
 n )  =  K ) ) )
468467anbi2d 740 . . . . . . . . . . . . . . . . . . 19  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( ( ph  /\  ( n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... K
)  /\  ( p `  n )  =  K ) )  <->  ( ph  /\  ( n  e.  ( 1 ... N )  /\  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) `
 n )  =  K ) ) ) )
469314neeq1d 2853 . . . . . . . . . . . . . . . . . . 19  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( B  =/=  ( n  -  1 )  <->  [_ ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  =/=  ( n  -  1 ) ) )
470468, 469imbi12d 334 . . . . . . . . . . . . . . . . . 18  |-  ( p  =  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  ->  ( ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  p :
( 1 ... N
) --> ( 0 ... K )  /\  (
p `  n )  =  K ) )  ->  B  =/=  ( n  - 
1 ) )  <->  ( ( ph  /\  ( n  e.  ( 1 ... N
)  /\  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) `
 n )  =  K ) )  ->  [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  =/=  (
n  -  1 ) ) ) )
471 poimirlem28.4 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  p :
( 1 ... N
) --> ( 0 ... K )  /\  (
p `  n )  =  K ) )  ->  B  =/=  ( n  - 
1 ) )
472465, 311, 470, 471vtoclf 3258 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) : ( 1 ... N ) --> ( 0 ... K )  /\  ( ( q  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) ) `
 n )  =  K ) )  ->  [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  =/=  (
n  -  1 ) )
473461, 472syldan 487 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
m  e.  NN0  /\  m  <  N )  /\  ( n  e.  (
1 ... ( m  + 
1 ) )  /\  q : ( 1 ... ( m  +  1 ) ) --> ( 0 ... K )  /\  ( q `  n
)  =  K ) ) )  ->  [_ (
q  u.  ( ( ( ( m  + 
1 )  +  1 ) ... N )  X.  { 0 } ) )  /  p ]_ B  =/=  (
n  -  1 ) )
474473anassrs 680 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  m  <  N ) )  /\  ( n  e.  ( 1 ... (
m  +  1 ) )  /\  q : ( 1 ... (
m  +  1 ) ) --> ( 0 ... K )  /\  (
q `  n )  =  K ) )  ->  [_ ( q  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  =/=  (
n  -  1 ) )
475266, 268, 421, 450, 474poimirlem27 33436 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
2  ||  ( ( # `
 { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... (
m  +  1 ) ) )  X.  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  X.  ( 0 ... (
m  +  1 ) ) )  |  A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) ) )
476266, 268, 421poimirlem26 33435 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
2  ||  ( ( # `
 { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... (
m  +  1 ) ) )  X.  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  X.  ( 0 ... (
m  +  1 ) ) )  |  A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) ) )
477 fzfi 12771 . . . . . . . . . . . . . . . . . . 19  |-  ( 0 ... ( m  + 
1 ) )  e. 
Fin
478 xpfi 8231 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  e.  Fin  /\  ( 0 ... (
m  +  1 ) )  e.  Fin )  ->  ( ( ( ( 0..^ K )  ^m  ( 1 ... (
m  +  1 ) ) )  X.  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  X.  ( 0 ... (
m  +  1 ) ) )  e.  Fin )
479255, 477, 478mp2an 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  e.  Fin
480 rabfi 8185 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  e.  Fin  ->  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  X.  ( 0 ... (
m  +  1 ) ) )  |  A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  e.  Fin )
481 hashcl 13147 . . . . . . . . . . . . . . . . . 18  |-  ( { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  |  A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }  e.  Fin  ->  ( # `
 { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... (
m  +  1 ) ) )  X.  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  X.  ( 0 ... (
m  +  1 ) ) )  |  A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  e.  NN0 )
482479, 480, 481mp2b 10 . . . . . . . . . . . . . . . . 17  |-  ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  |  A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  e.  NN0
483482nn0zi 11402 . . . . . . . . . . . . . . . 16  |-  ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  |  A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  e.  ZZ
484 zsubcl 11419 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  |  A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  e.  ZZ  /\  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } )  e.  ZZ )  ->  ( ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  |  A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  -  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) )  e.  ZZ )
485483, 263, 484mp2an 708 . . . . . . . . . . . . . . 15  |-  ( (
# `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... (
m  +  1 ) ) )  X.  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  X.  ( 0 ... (
m  +  1 ) ) )  |  A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) )  e.  ZZ
486 zsubcl 11419 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  |  A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  e.  ZZ  /\  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  e.  ZZ )  -> 
( ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  |  A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  -  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } ) )  e.  ZZ )
487483, 259, 486mp2an 708 . . . . . . . . . . . . . . 15  |-  ( (
# `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... (
m  +  1 ) ) )  X.  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  X.  ( 0 ... (
m  +  1 ) ) )  |  A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) )  e.  ZZ
488 dvds2sub 15016 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  ZZ  /\  ( ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  |  A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  -  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) )  e.  ZZ  /\  ( ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  |  A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  -  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } ) )  e.  ZZ )  ->  (
( 2  ||  (
( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  X.  ( 0 ... (
m  +  1 ) ) )  |  A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) )  /\  2  ||  ( ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  |  A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  -  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } ) ) )  ->  2  ||  (
( ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  |  A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  -  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) )  -  (
( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  X.  ( 0 ... (
m  +  1 ) ) )  |  A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) ) ) ) )
489241, 485, 487, 488mp3an 1424 . . . . . . . . . . . . . 14  |-  ( ( 2  ||  ( (
# `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... (
m  +  1 ) ) )  X.  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  X.  ( 0 ... (
m  +  1 ) ) )  |  A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) )  /\  2  ||  ( ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  |  A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  -  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } ) ) )  ->  2  ||  (
( ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  |  A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  -  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) )  -  (
( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  X.  ( 0 ... (
m  +  1 ) ) )  |  A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) ) ) )
490475, 476, 489syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
2  ||  ( (
( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  X.  ( 0 ... (
m  +  1 ) ) )  |  A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) )  -  (
( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  X.  ( 0 ... (
m  +  1 ) ) )  |  A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) ) ) )
491482nn0cni 11304 . . . . . . . . . . . . . 14  |-  ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  |  A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  e.  CC
492262nn0cni 11304 . . . . . . . . . . . . . 14  |-  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } )  e.  CC
493258nn0cni 11304 . . . . . . . . . . . . . 14  |-  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  e.  CC
494 nnncan1 10317 . . . . . . . . . . . . . 14  |-  ( ( ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  |  A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  e.  CC  /\  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } )  e.  CC  /\  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... (
m  +  1 ) ) )  X.  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  e.  CC )  -> 
( ( ( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  |  A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  -  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) )  -  (
( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  X.  ( 0 ... (
m  +  1 ) ) )  |  A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) ) )  =  ( ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) ) )
495491, 492, 493, 494mp3an 1424 . . . . . . . . . . . . 13  |-  ( ( ( # `  {
t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  X.  ( 0 ... ( m  + 
1 ) ) )  |  A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) )  \  {
( 2nd `  t
) } ) i  =  [_ ( 1st `  t )  /  s ]_ [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  -  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) )  -  (
( # `  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  X.  ( 0 ... (
m  +  1 ) ) )  |  A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( ( 0 ... ( m  +  1 ) ) 
\  { ( 2nd `  t ) } ) i  =  [_ ( 1st `  t )  / 
s ]_ [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) ) )  =  ( ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) )
496490, 495syl6breq 4694 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
2  ||  ( ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  -  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) ) )
497 dvdssub2 15023 . . . . . . . . . . . 12  |-  ( ( ( 2  e.  ZZ  /\  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  e.  ZZ  /\  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } )  e.  ZZ )  /\  2  ||  (
( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... (
m  +  1 ) ) )  X.  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  -  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) ) )  -> 
( 2  ||  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  <->  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... (
m  +  1 ) ) )  X.  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) ) )
498264, 496, 497sylancr 695 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
( 2  ||  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  <->  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... (
m  +  1 ) ) )  X.  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) ) )
499 nn0cn 11302 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN0  ->  m  e.  CC )
500 pncan1 10454 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  CC  ->  (
( m  +  1 )  -  1 )  =  m )
501499, 500syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  NN0  ->  ( ( m  +  1 )  -  1 )  =  m )
502501oveq2d 6666 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  NN0  ->  ( 0 ... ( ( m  +  1 )  - 
1 ) )  =  ( 0 ... m
) )
503502rexeqdv 3145 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  NN0  ->  ( E. j  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
) )
504502, 503raleqbidv 3152 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  NN0  ->  ( A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  <->  A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B
) )
5055043anbi1d 1403 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN0  ->  ( ( A. i  e.  ( 0 ... ( ( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... ( ( m  +  1 )  -  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) )  <->  ( A. i  e.  ( 0 ... m ) E. j  e.  ( 0 ... m ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) ) )
506505rabbidv 3189 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN0  ->  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... (
m  +  1 ) ) )  X.  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) }  =  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... m ) E. j  e.  ( 0 ... m ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } )
507506fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } )  =  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... m ) E. j  e.  ( 0 ... m ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) )
508507ad2antrl 764 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... (
m  +  1 ) ) )  X.  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } )  =  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... m ) E. j  e.  ( 0 ... m ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) )
5091adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  ->  N  e.  NN )
510191adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  ->  K  e.  NN )
511 simprl 794 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  ->  m  e.  NN0 )
512 simprr 796 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  ->  m  <  N )
513509, 510, 511, 512poimirlem4 33413 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  ->  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  X.  { f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } )  |  A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )  u.  ( ( ( m  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }  ~~  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... m ) E. j  e.  ( 0 ... m ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } )
514 fzfi 12771 . . . . . . . . . . . . . . . . . 18  |-  ( 1 ... m )  e. 
Fin
515 mapfi 8262 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 0..^ K )  e.  Fin  /\  (
1 ... m )  e. 
Fin )  ->  (
( 0..^ K )  ^m  ( 1 ... m ) )  e. 
Fin )
51610, 514, 515mp2an 708 . . . . . . . . . . . . . . . . 17  |-  ( ( 0..^ K )  ^m  ( 1 ... m
) )  e.  Fin
517 ovex 6678 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1 ... m )  e. 
_V
518517, 517mapval 7869 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1 ... m )  ^m  ( 1 ... m ) )  =  { f  |  f : ( 1 ... m ) --> ( 1 ... m ) }
519 mapfi 8262 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1 ... m
)  e.  Fin  /\  ( 1 ... m
)  e.  Fin )  ->  ( ( 1 ... m )  ^m  (
1 ... m ) )  e.  Fin )
520514, 514, 519mp2an 708 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1 ... m )  ^m  ( 1 ... m ) )  e. 
Fin
521518, 520eqeltrri 2698 . . . . . . . . . . . . . . . . . 18  |-  { f  |  f : ( 1 ... m ) --> ( 1 ... m
) }  e.  Fin
522 f1of 6137 . . . . . . . . . . . . . . . . . . 19  |-  ( f : ( 1 ... m ) -1-1-onto-> ( 1 ... m
)  ->  f :
( 1 ... m
) --> ( 1 ... m ) )
523522ss2abi 3674 . . . . . . . . . . . . . . . . . 18  |-  { f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) }  C_  { f  |  f : ( 1 ... m ) --> ( 1 ... m
) }
524 ssfi 8180 . . . . . . . . . . . . . . . . . 18  |-  ( ( { f  |  f : ( 1 ... m ) --> ( 1 ... m ) }  e.  Fin  /\  {
f  |  f : ( 1 ... m
)
-1-1-onto-> ( 1 ... m
) }  C_  { f  |  f : ( 1 ... m ) --> ( 1 ... m
) } )  ->  { f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m
) }  e.  Fin )
525521, 523, 524mp2an 708 . . . . . . . . . . . . . . . . 17  |-  { f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) }  e.  Fin
526 xpfi 8231 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  e.  Fin  /\  {
f  |  f : ( 1 ... m
)
-1-1-onto-> ( 1 ... m
) }  e.  Fin )  ->  ( ( ( 0..^ K )  ^m  ( 1 ... m
) )  X.  {
f  |  f : ( 1 ... m
)
-1-1-onto-> ( 1 ... m
) } )  e. 
Fin )
527516, 525, 526mp2an 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  X. 
{ f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m
) } )  e. 
Fin
528 rabfi 8185 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  X.  { f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } )  e.  Fin  ->  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  X. 
{ f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m
) } )  | 
A. i  e.  ( 0 ... m ) E. j  e.  ( 0 ... m ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... m ) )  X. 
{ 0 } ) ) )  u.  (
( ( m  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  e.  Fin )
529527, 528ax-mp 5 . . . . . . . . . . . . . . 15  |-  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m
) )  X.  {
f  |  f : ( 1 ... m
)
-1-1-onto-> ( 1 ... m
) } )  | 
A. i  e.  ( 0 ... m ) E. j  e.  ( 0 ... m ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... m ) )  X. 
{ 0 } ) ) )  u.  (
( ( m  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B }  e.  Fin
530 rabfi 8185 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( 0..^ K )  ^m  ( 1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  e.  Fin  ->  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) }  e.  Fin )
531255, 530ax-mp 5 . . . . . . . . . . . . . . 15  |-  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... (
m  +  1 ) ) )  X.  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) }  e.  Fin
532 hashen 13135 . . . . . . . . . . . . . . 15  |-  ( ( { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  X.  { f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } )  |  A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )  u.  ( ( ( m  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }  e.  Fin  /\  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) }  e.  Fin )  -> 
( ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  X. 
{ f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m
) } )  | 
A. i  e.  ( 0 ... m ) E. j  e.  ( 0 ... m ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... m ) )  X. 
{ 0 } ) ) )  u.  (
( ( m  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  =  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } )  <->  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  X.  { f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } )  |  A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )  u.  ( ( ( m  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }  ~~  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... m ) E. j  e.  ( 0 ... m ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) )
533529, 531, 532mp2an 708 . . . . . . . . . . . . . 14  |-  ( (
# `  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... m ) )  X.  { f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } )  |  A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )  u.  ( ( ( m  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  =  (
# `  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... m ) E. j  e.  ( 0 ... m ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } )  <->  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  X.  { f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } )  |  A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )  u.  ( ( ( m  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }  ~~  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... m ) E. j  e.  ( 0 ... m ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } )
534513, 533sylibr 224 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m
) )  X.  {
f  |  f : ( 1 ... m
)
-1-1-onto-> ( 1 ... m
) } )  | 
A. i  e.  ( 0 ... m ) E. j  e.  ( 0 ... m ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... m ) )  X. 
{ 0 } ) ) )  u.  (
( ( m  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  =  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } ) )
535508, 534eqtr4d 2659 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... (
m  +  1 ) ) )  X.  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  |  ( A. i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) E. j  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  /\  ( ( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } )  =  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  X.  { f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } )  |  A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )  u.  ( ( ( m  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } ) )
536535breq2d 4665 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
( 2  ||  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  ( A. i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) E. j  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) i  =  [_ ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B  /\  (
( 1st `  s
) `  ( m  +  1 ) )  =  0  /\  (
( 2nd `  s
) `  ( m  +  1 ) )  =  ( m  + 
1 ) ) } )  <->  2  ||  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... m ) )  X.  { f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } )  |  A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )  u.  ( ( ( m  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } ) ) )
537498, 536bitrd 268 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
( 2  ||  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  <->  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m
) )  X.  {
f  |  f : ( 1 ... m
)
-1-1-onto-> ( 1 ... m
) } )  | 
A. i  e.  ( 0 ... m ) E. j  e.  ( 0 ... m ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... m ) )  X. 
{ 0 } ) ) )  u.  (
( ( m  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) ) )
538537biimpd 219 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
( 2  ||  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  ->  2  ||  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  X. 
{ f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m
) } )  | 
A. i  e.  ( 0 ... m ) E. j  e.  ( 0 ... m ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... m ) )  X. 
{ 0 } ) ) )  u.  (
( ( m  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) ) )
539538con3d 148 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  NN0  /\  m  < 
N ) )  -> 
( -.  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m
) )  X.  {
f  |  f : ( 1 ... m
)
-1-1-onto-> ( 1 ... m
) } )  | 
A. i  e.  ( 0 ... m ) E. j  e.  ( 0 ... m ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... m ) )  X. 
{ 0 } ) ) )  u.  (
( ( m  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  ->  -.  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... (
m  +  1 ) ) )  X.  {
f  |  f : ( 1 ... (
m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) ) )
540539expcom 451 . . . . . . 7  |-  ( ( m  e.  NN0  /\  m  <  N )  -> 
( ph  ->  ( -.  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  X.  { f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } )  |  A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )  u.  ( ( ( m  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  ->  -.  2  ||  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) ) ) )
541540a2d 29 . . . . . 6  |-  ( ( m  e.  NN0  /\  m  <  N )  -> 
( ( ph  ->  -.  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  X.  { f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m ) } )  |  A. i  e.  ( 0 ... m
) E. j  e.  ( 0 ... m
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... m ) )  X.  { 0 } ) ) )  u.  ( ( ( m  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } ) )  -> 
( ph  ->  -.  2  ||  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... ( m  +  1 ) ) )  X. 
{ f  |  f : ( 1 ... ( m  +  1 ) ) -1-1-onto-> ( 1 ... (
m  +  1 ) ) } )  | 
A. i  e.  ( 0 ... ( m  +  1 ) ) E. j  e.  ( 0 ... ( m  +  1 ) ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... ( m  +  1 ) ) )  X. 
{ 0 } ) ) )  u.  (
( ( ( m  +  1 )  +  1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) ) ) )
5425413adant1 1079 . . . . 5  |-  ( ( N  e.  NN0  /\  m  e.  NN0  /\  m  <  N )  ->  (
( ph  ->  -.  2  ||  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... m ) )  X. 
{ f  |  f : ( 1 ... m ) -1-1-onto-> ( 1 ... m
) } )  | 
A. i  e.  ( 0 ... m ) E. j  e.  ( 0 ... m ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... m ) )  X. 
{ 0 } ) ) )  u.  (
( ( m  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) )  ->  ( ph  ->  -.  2  ||  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... ( m  + 
1 ) ) )  X.  { f  |  f : ( 1 ... ( m  + 
1 ) ) -1-1-onto-> ( 1 ... ( m  + 
1 ) ) } )  |  A. i  e.  ( 0 ... (
m  +  1 ) ) E. j  e.  ( 0 ... (
m  +  1 ) ) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... ( m  + 
1 ) ) )  X.  { 0 } ) ) )  u.  ( ( ( ( m  +  1 )  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } ) ) ) )
543107, 132, 157, 182, 240, 542fnn0ind 11476 . . . 4  |-  ( ( N  e.  NN0  /\  N  e.  NN0  /\  N  <_  N )  ->  ( ph  ->  -.  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  u.  (
( ( N  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) ) )
5445, 543mpcom 38 . . 3  |-  ( ph  ->  -.  2  ||  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } ) )
545 dvds0 14997 . . . . . . . 8  |-  ( 2  e.  ZZ  ->  2  ||  0 )
546241, 545ax-mp 5 . . . . . . 7  |-  2  ||  0
547 hash0 13158 . . . . . . 7  |-  ( # `  (/) )  =  0
548546, 547breqtrri 4680 . . . . . 6  |-  2  ||  ( # `  (/) )
549 fveq2 6191 . . . . . 6  |-  ( { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }  =  (/)  ->  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
)  =  ( # `  (/) ) )
550548, 549syl5breqr 4691 . . . . 5  |-  ( { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }  =  (/)  ->  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
) )
5513ltp1d 10954 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  <  ( N  +  1 ) )
552283peano2zd 11485 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
553 fzn 12357 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  ( N  +  1 )  <-> 
( ( N  + 
1 ) ... N
)  =  (/) ) )
554552, 283, 553syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( N  <  ( N  +  1 )  <-> 
( ( N  + 
1 ) ... N
)  =  (/) ) )
555551, 554mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( N  + 
1 ) ... N
)  =  (/) )
556555xpeq1d 5138 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( N  +  1 ) ... N )  X.  {
0 } )  =  ( (/)  X.  { 0 } ) )
557556, 86syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( N  +  1 ) ... N )  X.  {
0 } )  =  (/) )
558557uneq2d 3767 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) )  =  ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  (/) ) )
559 un0 3967 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  u.  (/) )  =  ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )
560558, 559syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) )  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) ) )
561560csbeq1d 3540 . . . . . . . . . . . 12  |-  ( ph  ->  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  =  [_ ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  /  p ]_ B )
562 ovex 6678 . . . . . . . . . . . . 13  |-  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  e. 
_V
563 poimirlem28.1 . . . . . . . . . . . . 13  |-  ( p  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  ->  B  =  C )
564562, 563csbie 3559 . . . . . . . . . . . 12  |-  [_ (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  /  p ]_ B  =  C
565561, 564syl6eq 2672 . . . . . . . . . . 11  |-  ( ph  ->  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  =  C )
566565eqeq2d 2632 . . . . . . . . . 10  |-  ( ph  ->  ( i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  <->  i  =  C ) )
567566rexbidv 3052 . . . . . . . . 9  |-  ( ph  ->  ( E. j  e.  ( 0 ... N
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  <->  E. j  e.  ( 0 ... N ) i  =  C ) )
568567ralbidv 2986 . . . . . . . 8  |-  ( ph  ->  ( A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B  <->  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C ) )
569568rabbidv 3189 . . . . . . 7  |-  ( ph  ->  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B }  =  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C } )
570569fveq2d 6195 . . . . . 6  |-  ( ph  ->  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  u.  (
( ( N  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  =  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
) )
571570breq2d 4665 . . . . 5  |-  ( ph  ->  ( 2  ||  ( # `
 { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  [_ ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  u.  ( ( ( N  +  1 ) ... N )  X.  {
0 } ) )  /  p ]_ B } )  <->  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }
) ) )
572550, 571syl5ibr 236 . . . 4  |-  ( ph  ->  ( { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C }  =  (/)  ->  2  ||  ( # `  {
s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  u.  (
( ( N  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } ) ) )
573572necon3bd 2808 . . 3  |-  ( ph  ->  ( -.  2  ||  ( # `  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  [_ (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  u.  (
( ( N  + 
1 ) ... N
)  X.  { 0 } ) )  /  p ]_ B } )  ->  { s  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C }  =/=  (/) ) )
574544, 573mpd 15 . 2  |-  ( ph  ->  { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C }  =/=  (/) )
575 rabn0 3958 . 2  |-  ( { s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  | 
A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  C }  =/=  (/)  <->  E. s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C )
576574, 575sylib 208 1  |-  ( ph  ->  E. s  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200   [_csb 3533    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   "cima 5117    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oFcof 6895   1stc1st 7166   2ndc2nd 7167   1oc1o 7553    ^m cmap 7857    ~~ cen 7952   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984
This theorem is referenced by:  poimirlem32  33441
  Copyright terms: Public domain W3C validator