MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ram Structured version   Visualization version   Unicode version

Theorem 0ram 15724
Description: The Ramsey number when  M  = 
0. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
0ram  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
0 Ramsey  F )  =  sup ( ran  F ,  RR ,  <  ) )
Distinct variable groups:    x, y, R    x, F, y    x, V
Allowed substitution hint:    V( y)

Proof of Theorem 0ram
Dummy variables  b 
d  z  f  c  s  a  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
2 0nn0 11307 . . . 4  |-  0  e.  NN0
32a1i 11 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  0  e.  NN0 )
4 simpl1 1064 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  R  e.  V )
5 simpl3 1066 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  F : R --> NN0 )
6 frn 6053 . . . . 5  |-  ( F : R --> NN0  ->  ran 
F  C_  NN0 )
75, 6syl 17 . . . 4  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  ran  F 
C_  NN0 )
8 nn0ssz 11398 . . . . . 6  |-  NN0  C_  ZZ
97, 8syl6ss 3615 . . . . 5  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  ran  F 
C_  ZZ )
10 fdm 6051 . . . . . . . 8  |-  ( F : R --> NN0  ->  dom 
F  =  R )
115, 10syl 17 . . . . . . 7  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  dom  F  =  R )
12 simpl2 1065 . . . . . . 7  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  R  =/=  (/) )
1311, 12eqnetrd 2861 . . . . . 6  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  dom  F  =/=  (/) )
14 dm0rn0 5342 . . . . . . 7  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
1514necon3bii 2846 . . . . . 6  |-  ( dom 
F  =/=  (/)  <->  ran  F  =/=  (/) )
1613, 15sylib 208 . . . . 5  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  ran  F  =/=  (/) )
17 simpr 477 . . . . 5  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )
18 suprzcl2 11778 . . . . 5  |-  ( ( ran  F  C_  ZZ  /\ 
ran  F  =/=  (/)  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  ran  F )
199, 16, 17, 18syl3anc 1326 . . . 4  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  ran  F )
207, 19sseldd 3604 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  NN0 )
21 vex 3203 . . . . . . 7  |-  s  e. 
_V
221hashbc0 15709 . . . . . . 7  |-  ( s  e.  _V  ->  (
s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  =  { (/)
} )
2321, 22ax-mp 5 . . . . . 6  |-  ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  =  { (/) }
2423feq2i 6037 . . . . 5  |-  ( f : ( s ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 ) --> R  <-> 
f : { (/) } --> R )
2524biimpi 206 . . . 4  |-  ( f : ( s ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 ) --> R  ->  f : { (/)
} --> R )
26 simprr 796 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  f : { (/)
} --> R )
27 0ex 4790 . . . . . . 7  |-  (/)  e.  _V
2827snid 4208 . . . . . 6  |-  (/)  e.  { (/)
}
29 ffvelrn 6357 . . . . . 6  |-  ( ( f : { (/) } --> R  /\  (/)  e.  { (/)
} )  ->  (
f `  (/) )  e.  R )
3026, 28, 29sylancl 694 . . . . 5  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( f `  (/) )  e.  R )
3121pwid 4174 . . . . . 6  |-  s  e. 
~P s
3231a1i 11 . . . . 5  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  s  e.  ~P s )
335adantr 481 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  F : R --> NN0 )
3433, 30ffvelrnd 6360 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( F `  ( f `  (/) ) )  e.  NN0 )
3534nn0red 11352 . . . . . . 7  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( F `  ( f `  (/) ) )  e.  RR )
3635rexrd 10089 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( F `  ( f `  (/) ) )  e.  RR* )
3720nn0red 11352 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
3837rexrd 10089 . . . . . . 7  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR* )
3938adantr 481 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR* )
40 hashxrcl 13148 . . . . . . 7  |-  ( s  e.  _V  ->  ( # `
 s )  e. 
RR* )
4121, 40mp1i 13 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( # `  s
)  e.  RR* )
429adantr 481 . . . . . . 7  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ran  F  C_  ZZ )
4317adantr 481 . . . . . . 7  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )
44 ffn 6045 . . . . . . . . 9  |-  ( F : R --> NN0  ->  F  Fn  R )
4533, 44syl 17 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  F  Fn  R
)
46 fnfvelrn 6356 . . . . . . . 8  |-  ( ( F  Fn  R  /\  ( f `  (/) )  e.  R )  ->  ( F `  ( f `  (/) ) )  e. 
ran  F )
4745, 30, 46syl2anc 693 . . . . . . 7  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( F `  ( f `  (/) ) )  e.  ran  F )
48 suprzub 11779 . . . . . . 7  |-  ( ( ran  F  C_  ZZ  /\ 
E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x  /\  ( F `  ( f `  (/) ) )  e. 
ran  F )  -> 
( F `  (
f `  (/) ) )  <_  sup ( ran  F ,  RR ,  <  )
)
4942, 43, 47, 48syl3anc 1326 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( F `  ( f `  (/) ) )  <_  sup ( ran  F ,  RR ,  <  )
)
50 simprl 794 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  sup ( ran  F ,  RR ,  <  )  <_  ( # `  s
) )
5136, 39, 41, 49, 50xrletrd 11993 . . . . 5  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( F `  ( f `  (/) ) )  <_  ( # `  s
) )
5228a1i 11 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  (/)  e.  { (/) } )
53 fvex 6201 . . . . . . . 8  |-  ( f `
 (/) )  e.  _V
5453snid 4208 . . . . . . 7  |-  ( f `
 (/) )  e.  {
( f `  (/) ) }
5554a1i 11 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( f `  (/) )  e.  { ( f `  (/) ) } )
56 ffn 6045 . . . . . . 7  |-  ( f : { (/) } --> R  -> 
f  Fn  { (/) } )
57 elpreima 6337 . . . . . . 7  |-  ( f  Fn  { (/) }  ->  (
(/)  e.  ( `' f " { ( f `
 (/) ) } )  <-> 
( (/)  e.  { (/) }  /\  ( f `  (/) )  e.  { ( f `  (/) ) } ) ) )
5826, 56, 573syl 18 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  ( (/)  e.  ( `' f " {
( f `  (/) ) } )  <->  ( (/)  e.  { (/)
}  /\  ( f `  (/) )  e.  {
( f `  (/) ) } ) ) )
5952, 55, 58mpbir2and 957 . . . . 5  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  (/)  e.  ( `' f " { ( f `  (/) ) } ) )
60 fveq2 6191 . . . . . . . 8  |-  ( c  =  ( f `  (/) )  ->  ( F `  c )  =  ( F `  ( f `
 (/) ) ) )
6160breq1d 4663 . . . . . . 7  |-  ( c  =  ( f `  (/) )  ->  ( ( F `  c )  <_  ( # `  z
)  <->  ( F `  ( f `  (/) ) )  <_  ( # `  z
) ) )
62 vex 3203 . . . . . . . . . . 11  |-  z  e. 
_V
631hashbc0 15709 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  (
z ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  =  { (/)
} )
6462, 63ax-mp 5 . . . . . . . . . 10  |-  ( z ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  =  { (/) }
6564sseq1i 3629 . . . . . . . . 9  |-  ( ( z ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  C_  ( `' f " {
c } )  <->  { (/) }  C_  ( `' f " {
c } ) )
6627snss 4316 . . . . . . . . 9  |-  ( (/)  e.  ( `' f " { c } )  <->  { (/) }  C_  ( `' f " {
c } ) )
6765, 66bitr4i 267 . . . . . . . 8  |-  ( ( z ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  C_  ( `' f " {
c } )  <->  (/)  e.  ( `' f " {
c } ) )
68 sneq 4187 . . . . . . . . . 10  |-  ( c  =  ( f `  (/) )  ->  { c }  =  { (
f `  (/) ) } )
6968imaeq2d 5466 . . . . . . . . 9  |-  ( c  =  ( f `  (/) )  ->  ( `' f " { c } )  =  ( `' f " { ( f `  (/) ) } ) )
7069eleq2d 2687 . . . . . . . 8  |-  ( c  =  ( f `  (/) )  ->  ( (/)  e.  ( `' f " {
c } )  <->  (/)  e.  ( `' f " {
( f `  (/) ) } ) ) )
7167, 70syl5bb 272 . . . . . . 7  |-  ( c  =  ( f `  (/) )  ->  ( (
z ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  C_  ( `' f " {
c } )  <->  (/)  e.  ( `' f " {
( f `  (/) ) } ) ) )
7261, 71anbi12d 747 . . . . . 6  |-  ( c  =  ( f `  (/) )  ->  ( (
( F `  c
)  <_  ( # `  z
)  /\  ( z
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  C_  ( `' f " {
c } ) )  <-> 
( ( F `  ( f `  (/) ) )  <_  ( # `  z
)  /\  (/)  e.  ( `' f " {
( f `  (/) ) } ) ) ) )
73 fveq2 6191 . . . . . . . 8  |-  ( z  =  s  ->  ( # `
 z )  =  ( # `  s
) )
7473breq2d 4665 . . . . . . 7  |-  ( z  =  s  ->  (
( F `  (
f `  (/) ) )  <_  ( # `  z
)  <->  ( F `  ( f `  (/) ) )  <_  ( # `  s
) ) )
7574anbi1d 741 . . . . . 6  |-  ( z  =  s  ->  (
( ( F `  ( f `  (/) ) )  <_  ( # `  z
)  /\  (/)  e.  ( `' f " {
( f `  (/) ) } ) )  <->  ( ( F `  ( f `  (/) ) )  <_ 
( # `  s )  /\  (/)  e.  ( `' f " { ( f `  (/) ) } ) ) ) )
7672, 75rspc2ev 3324 . . . . 5  |-  ( ( ( f `  (/) )  e.  R  /\  s  e. 
~P s  /\  (
( F `  (
f `  (/) ) )  <_  ( # `  s
)  /\  (/)  e.  ( `' f " {
( f `  (/) ) } ) ) )  ->  E. c  e.  R  E. z  e.  ~P  s ( ( F `
 c )  <_ 
( # `  z )  /\  ( z ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  C_  ( `' f " {
c } ) ) )
7730, 32, 51, 59, 76syl112anc 1330 . . . 4  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : { (/)
} --> R ) )  ->  E. c  e.  R  E. z  e.  ~P  s ( ( F `
 c )  <_ 
( # `  z )  /\  ( z ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  C_  ( `' f " {
c } ) ) )
7825, 77sylanr2 685 . . 3  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 ) --> R ) )  ->  E. c  e.  R  E. z  e.  ~P  s ( ( F `  c )  <_  ( # `  z
)  /\  ( z
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  C_  ( `' f " {
c } ) ) )
791, 3, 4, 5, 20, 78ramub 15717 . 2  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
0 Ramsey  F )  <_  sup ( ran  F ,  RR ,  <  ) )
80 fvelrnb 6243 . . . . 5  |-  ( F  Fn  R  ->  ( sup ( ran  F ,  RR ,  <  )  e. 
ran  F  <->  E. c  e.  R  ( F `  c )  =  sup ( ran 
F ,  RR ,  <  ) ) )
815, 44, 803syl 18 . . . 4  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  ( sup ( ran  F ,  RR ,  <  )  e. 
ran  F  <->  E. c  e.  R  ( F `  c )  =  sup ( ran 
F ,  RR ,  <  ) ) )
8219, 81mpbid 222 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  E. c  e.  R  ( F `  c )  =  sup ( ran  F ,  RR ,  <  ) )
832a1i 11 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
0  e.  NN0 )
84 simpll1 1100 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  ->  R  e.  V )
85 simpll3 1102 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  ->  F : R --> NN0 )
86 nnm1nn0 11334 . . . . . . . . . 10  |-  ( ( F `  c )  e.  NN  ->  (
( F `  c
)  -  1 )  e.  NN0 )
8786ad2antll 765 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
( ( F `  c )  -  1 )  e.  NN0 )
88 vex 3203 . . . . . . . . . . . . 13  |-  c  e. 
_V
8927, 88f1osn 6176 . . . . . . . . . . . 12  |-  { <. (/)
,  c >. } : { (/) } -1-1-onto-> { c }
90 f1of 6137 . . . . . . . . . . . 12  |-  ( {
<. (/) ,  c >. } : { (/) } -1-1-onto-> { c }  ->  {
<. (/) ,  c >. } : { (/) } --> { c } )
9189, 90ax-mp 5 . . . . . . . . . . 11  |-  { <. (/)
,  c >. } : { (/) } --> { c }
92 simprl 794 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
c  e.  R )
9392snssd 4340 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  ->  { c }  C_  R )
94 fss 6056 . . . . . . . . . . 11  |-  ( ( { <. (/) ,  c >. } : { (/) } --> { c }  /\  { c }  C_  R )  ->  { <. (/) ,  c >. } : { (/) } --> R )
9591, 93, 94sylancr 695 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  ->  { <. (/) ,  c >. } : { (/) } --> R )
96 ovex 6678 . . . . . . . . . . . 12  |-  ( 1 ... ( ( F `
 c )  - 
1 ) )  e. 
_V
971hashbc0 15709 . . . . . . . . . . . 12  |-  ( ( 1 ... ( ( F `  c )  -  1 ) )  e.  _V  ->  (
( 1 ... (
( F `  c
)  -  1 ) ) ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  =  { (/)
} )
9896, 97ax-mp 5 . . . . . . . . . . 11  |-  ( ( 1 ... ( ( F `  c )  -  1 ) ) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  =  { (/) }
9998feq2i 6037 . . . . . . . . . 10  |-  ( {
<. (/) ,  c >. } : ( ( 1 ... ( ( F `
 c )  - 
1 ) ) ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 ) --> R  <->  { <. (/) ,  c >. } : { (/) } --> R )
10095, 99sylibr 224 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  ->  { <. (/) ,  c >. } : ( ( 1 ... ( ( F `
 c )  - 
1 ) ) ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 ) --> R )
10164sseq1i 3629 . . . . . . . . . . 11  |-  ( ( z ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  C_  ( `' { <. (/) ,  c >. } " { d } )  <->  { (/) }  C_  ( `' { <. (/) ,  c >. } " { d } ) )
10227snss 4316 . . . . . . . . . . 11  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  <->  { (/) }  C_  ( `' { <. (/) ,  c >. } " { d } ) )
103101, 102bitr4i 267 . . . . . . . . . 10  |-  ( ( z ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) 0 )  C_  ( `' { <. (/) ,  c >. } " { d } )  <->  (/)  e.  ( `' { <. (/) ,  c >. } " { d } ) )
104 fzfid 12772 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( 1 ... (
( F `  c
)  -  1 ) )  e.  Fin )
105 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
z  C_  ( 1 ... ( ( F `
 c )  - 
1 ) ) )
106 ssdomg 8001 . . . . . . . . . . . . . . 15  |-  ( ( 1 ... ( ( F `  c )  -  1 ) )  e.  Fin  ->  (
z  C_  ( 1 ... ( ( F `
 c )  - 
1 ) )  -> 
z  ~<_  ( 1 ... ( ( F `  c )  -  1 ) ) ) )
107104, 105, 106sylc 65 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
z  ~<_  ( 1 ... ( ( F `  c )  -  1 ) ) )
108 ssfi 8180 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1 ... (
( F `  c
)  -  1 ) )  e.  Fin  /\  z  C_  ( 1 ... ( ( F `  c )  -  1 ) ) )  -> 
z  e.  Fin )
109104, 105, 108syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
z  e.  Fin )
110 hashdom 13168 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  Fin  /\  ( 1 ... (
( F `  c
)  -  1 ) )  e.  Fin )  ->  ( ( # `  z
)  <_  ( # `  (
1 ... ( ( F `
 c )  - 
1 ) ) )  <-> 
z  ~<_  ( 1 ... ( ( F `  c )  -  1 ) ) ) )
111109, 104, 110syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( ( # `  z
)  <_  ( # `  (
1 ... ( ( F `
 c )  - 
1 ) ) )  <-> 
z  ~<_  ( 1 ... ( ( F `  c )  -  1 ) ) ) )
112107, 111mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( # `  z )  <_  ( # `  (
1 ... ( ( F `
 c )  - 
1 ) ) ) )
11387adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( ( F `  c )  -  1 )  e.  NN0 )
114 hashfz1 13134 . . . . . . . . . . . . . 14  |-  ( ( ( F `  c
)  -  1 )  e.  NN0  ->  ( # `  ( 1 ... (
( F `  c
)  -  1 ) ) )  =  ( ( F `  c
)  -  1 ) )
115113, 114syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( # `  ( 1 ... ( ( F `
 c )  - 
1 ) ) )  =  ( ( F `
 c )  - 
1 ) )
116112, 115breqtrd 4679 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( # `  z )  <_  ( ( F `
 c )  - 
1 ) )
117 hashcl 13147 . . . . . . . . . . . . . 14  |-  ( z  e.  Fin  ->  ( # `
 z )  e. 
NN0 )
118109, 117syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( # `  z )  e.  NN0 )
1195ffvelrnda 6359 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  ( F `  c )  e.  NN0 )
120119adantrr 753 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
( F `  c
)  e.  NN0 )
121120adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( F `  c
)  e.  NN0 )
122 nn0ltlem1 11437 . . . . . . . . . . . . 13  |-  ( ( ( # `  z
)  e.  NN0  /\  ( F `  c )  e.  NN0 )  -> 
( ( # `  z
)  <  ( F `  c )  <->  ( # `  z
)  <_  ( ( F `  c )  -  1 ) ) )
123118, 121, 122syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( ( # `  z
)  <  ( F `  c )  <->  ( # `  z
)  <_  ( ( F `  c )  -  1 ) ) )
124116, 123mpbird 247 . . . . . . . . . . 11  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( # `  z )  <  ( F `  c ) )
12527, 88fvsn 6446 . . . . . . . . . . . . . . 15  |-  ( {
<. (/) ,  c >. } `  (/) )  =  c
126 f1ofn 6138 . . . . . . . . . . . . . . . . 17  |-  ( {
<. (/) ,  c >. } : { (/) } -1-1-onto-> { c }  ->  {
<. (/) ,  c >. }  Fn  { (/) } )
127 elpreima 6337 . . . . . . . . . . . . . . . . 17  |-  ( {
<. (/) ,  c >. }  Fn  { (/) }  ->  (
(/)  e.  ( `' { <. (/) ,  c >. } " { d } )  <->  ( (/)  e.  { (/)
}  /\  ( { <.
(/) ,  c >. } `
 (/) )  e.  {
d } ) ) )
12889, 126, 127mp2b 10 . . . . . . . . . . . . . . . 16  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  <-> 
( (/)  e.  { (/) }  /\  ( { <. (/)
,  c >. } `  (/) )  e.  { d } ) )
129128simprbi 480 . . . . . . . . . . . . . . 15  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  ->  ( { <. (/)
,  c >. } `  (/) )  e.  { d } )
130125, 129syl5eqelr 2706 . . . . . . . . . . . . . 14  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  ->  c  e.  {
d } )
131 elsni 4194 . . . . . . . . . . . . . 14  |-  ( c  e.  { d }  ->  c  =  d )
132130, 131syl 17 . . . . . . . . . . . . 13  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  ->  c  =  d )
133132fveq2d 6195 . . . . . . . . . . . 12  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  ->  ( F `  c )  =  ( F `  d ) )
134133breq2d 4665 . . . . . . . . . . 11  |-  ( (/)  e.  ( `' { <. (/)
,  c >. } " { d } )  ->  ( ( # `  z )  <  ( F `  c )  <->  (
# `  z )  <  ( F `  d
) ) )
135124, 134syl5ibcom 235 . . . . . . . . . 10  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( (/)  e.  ( `' { <. (/) ,  c >. } " { d } )  ->  ( # `  z
)  <  ( F `  d ) ) )
136103, 135syl5bi 232 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R
--> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  /\  (
c  e.  R  /\  ( F `  c )  e.  NN ) )  /\  ( d  e.  R  /\  z  C_  ( 1 ... (
( F `  c
)  -  1 ) ) ) )  -> 
( ( z ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) 0 )  C_  ( `' { <. (/) ,  c >. } " { d } )  ->  ( # `  z
)  <  ( F `  d ) ) )
1371, 83, 84, 85, 87, 100, 136ramlb 15723 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
( ( F `  c )  -  1 )  <  ( 0 Ramsey  F ) )
138 ramubcl 15722 . . . . . . . . . . 11  |-  ( ( ( 0  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( sup ( ran 
F ,  RR ,  <  )  e.  NN0  /\  ( 0 Ramsey  F )  <_  sup ( ran  F ,  RR ,  <  ) ) )  ->  ( 0 Ramsey  F )  e.  NN0 )
1393, 4, 5, 20, 79, 138syl32anc 1334 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
0 Ramsey  F )  e.  NN0 )
140139adantr 481 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
( 0 Ramsey  F )  e.  NN0 )
141 nn0lem1lt 11442 . . . . . . . . 9  |-  ( ( ( F `  c
)  e.  NN0  /\  ( 0 Ramsey  F )  e. 
NN0 )  ->  (
( F `  c
)  <_  ( 0 Ramsey  F )  <->  ( ( F `  c )  -  1 )  < 
( 0 Ramsey  F ) ) )
142120, 140, 141syl2anc 693 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
( ( F `  c )  <_  (
0 Ramsey  F )  <->  ( ( F `  c )  -  1 )  < 
( 0 Ramsey  F ) ) )
143137, 142mpbird 247 . . . . . . 7  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  ( c  e.  R  /\  ( F `  c )  e.  NN ) )  -> 
( F `  c
)  <_  ( 0 Ramsey  F ) )
144143expr 643 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  (
( F `  c
)  e.  NN  ->  ( F `  c )  <_  ( 0 Ramsey  F
) ) )
145139adantr 481 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  (
0 Ramsey  F )  e.  NN0 )
146145nn0ge0d 11354 . . . . . . 7  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  0  <_  ( 0 Ramsey  F ) )
147 breq1 4656 . . . . . . 7  |-  ( ( F `  c )  =  0  ->  (
( F `  c
)  <_  ( 0 Ramsey  F )  <->  0  <_  ( 0 Ramsey  F ) ) )
148146, 147syl5ibrcom 237 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  (
( F `  c
)  =  0  -> 
( F `  c
)  <_  ( 0 Ramsey  F ) ) )
149 elnn0 11294 . . . . . . 7  |-  ( ( F `  c )  e.  NN0  <->  ( ( F `
 c )  e.  NN  \/  ( F `
 c )  =  0 ) )
150119, 149sylib 208 . . . . . 6  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  (
( F `  c
)  e.  NN  \/  ( F `  c )  =  0 ) )
151144, 148, 150mpjaod 396 . . . . 5  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  ( F `  c )  <_  ( 0 Ramsey  F ) )
152 breq1 4656 . . . . 5  |-  ( ( F `  c )  =  sup ( ran 
F ,  RR ,  <  )  ->  ( ( F `  c )  <_  ( 0 Ramsey  F )  <->  sup ( ran  F ,  RR ,  <  )  <_ 
( 0 Ramsey  F ) ) )
153151, 152syl5ibcom 235 . . . 4  |-  ( ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )  /\  c  e.  R )  ->  (
( F `  c
)  =  sup ( ran  F ,  RR ,  <  )  ->  sup ( ran  F ,  RR ,  <  )  <_  ( 0 Ramsey  F ) ) )
154153rexlimdva 3031 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  ( E. c  e.  R  ( F `  c )  =  sup ( ran 
F ,  RR ,  <  )  ->  sup ( ran  F ,  RR ,  <  )  <_  ( 0 Ramsey  F ) ) )
15582, 154mpd 15 . 2  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  <_  (
0 Ramsey  F ) )
156139nn0red 11352 . . 3  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
0 Ramsey  F )  e.  RR )
157156, 37letri3d 10179 . 2  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
( 0 Ramsey  F )  =  sup ( ran 
F ,  RR ,  <  )  <->  ( ( 0 Ramsey  F )  <_  sup ( ran  F ,  RR ,  <  )  /\  sup ( ran  F ,  RR ,  <  )  <_  (
0 Ramsey  F ) ) ) )
15879, 155, 157mpbir2and 957 1  |-  ( ( ( R  e.  V  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
0 Ramsey  F )  =  sup ( ran  F ,  RR ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   <.cop 4183   class class class wbr 4653   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ~<_ cdom 7953   Fincfn 7955   supcsup 8346   RRcr 9935   0cc0 9936   1c1 9937   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ...cfz 12326   #chash 13117   Ramsey cram 15703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-ram 15705
This theorem is referenced by:  0ram2  15725  ramz  15729
  Copyright terms: Public domain W3C validator