MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramlb Structured version   Visualization version   Unicode version

Theorem ramlb 15723
Description: Establish a lower bound on a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
ramlb.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
ramlb.m  |-  ( ph  ->  M  e.  NN0 )
ramlb.r  |-  ( ph  ->  R  e.  V )
ramlb.f  |-  ( ph  ->  F : R --> NN0 )
ramlb.s  |-  ( ph  ->  N  e.  NN0 )
ramlb.g  |-  ( ph  ->  G : ( ( 1 ... N ) C M ) --> R )
ramlb.i  |-  ( (
ph  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( ( x C M )  C_  ( `' G " { c } )  ->  ( # `
 x )  < 
( F `  c
) ) )
Assertion
Ref Expression
ramlb  |-  ( ph  ->  N  <  ( M Ramsey  F ) )
Distinct variable groups:    x, c, C    F, c, x    G, c, x    a, b, c, i, x, M    ph, c, x    N, c, x    R, c, x    V, c, x
Allowed substitution hints:    ph( i, a, b)    C( i, a, b)    R( i, a, b)    F( i, a, b)    G( i, a, b)    N( i, a, b)    V( i, a, b)

Proof of Theorem ramlb
StepHypRef Expression
1 ramlb.c . . . . 5  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
2 ramlb.m . . . . . 6  |-  ( ph  ->  M  e.  NN0 )
32adantr 481 . . . . 5  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  M  e.  NN0 )
4 ramlb.r . . . . . 6  |-  ( ph  ->  R  e.  V )
54adantr 481 . . . . 5  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  R  e.  V )
6 ramlb.f . . . . . 6  |-  ( ph  ->  F : R --> NN0 )
76adantr 481 . . . . 5  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  F : R --> NN0 )
8 ramlb.s . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
98adantr 481 . . . . . 6  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  N  e.  NN0 )
10 simpr 477 . . . . . 6  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  ( M Ramsey  F )  <_  N )
11 ramubcl 15722 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( N  e.  NN0  /\  ( M Ramsey  F )  <_  N ) )  ->  ( M Ramsey  F
)  e.  NN0 )
123, 5, 7, 9, 10, 11syl32anc 1334 . . . . 5  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  ( M Ramsey  F )  e.  NN0 )
13 fzfid 12772 . . . . 5  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  ( 1 ... N
)  e.  Fin )
14 hashfz1 13134 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )
158, 14syl 17 . . . . . . 7  |-  ( ph  ->  ( # `  (
1 ... N ) )  =  N )
1615breq2d 4665 . . . . . 6  |-  ( ph  ->  ( ( M Ramsey  F
)  <_  ( # `  (
1 ... N ) )  <-> 
( M Ramsey  F )  <_  N ) )
1716biimpar 502 . . . . 5  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  ( M Ramsey  F )  <_  ( # `  (
1 ... N ) ) )
18 ramlb.g . . . . . 6  |-  ( ph  ->  G : ( ( 1 ... N ) C M ) --> R )
1918adantr 481 . . . . 5  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  G : ( ( 1 ... N ) C M ) --> R )
201, 3, 5, 7, 12, 13, 17, 19rami 15719 . . . 4  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  E. c  e.  R  E. x  e.  ~P  ( 1 ... N
) ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' G " { c } ) ) )
21 elpwi 4168 . . . . . . . . 9  |-  ( x  e.  ~P ( 1 ... N )  ->  x  C_  ( 1 ... N ) )
22 ramlb.i . . . . . . . . . . 11  |-  ( (
ph  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( ( x C M )  C_  ( `' G " { c } )  ->  ( # `
 x )  < 
( F `  c
) ) )
2322adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( ( x C M )  C_  ( `' G " { c } )  ->  ( # `
 x )  < 
( F `  c
) ) )
24 fzfid 12772 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( 1 ... N
)  e.  Fin )
25 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  ->  x  C_  ( 1 ... N ) )
26 ssfi 8180 . . . . . . . . . . . . . 14  |-  ( ( ( 1 ... N
)  e.  Fin  /\  x  C_  ( 1 ... N ) )  ->  x  e.  Fin )
2724, 25, 26syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  ->  x  e.  Fin )
28 hashcl 13147 . . . . . . . . . . . . 13  |-  ( x  e.  Fin  ->  ( # `
 x )  e. 
NN0 )
2927, 28syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( # `  x )  e.  NN0 )
3029nn0red 11352 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( # `  x )  e.  RR )
31 simpl 473 . . . . . . . . . . . . 13  |-  ( ( c  e.  R  /\  x  C_  ( 1 ... N ) )  -> 
c  e.  R )
32 ffvelrn 6357 . . . . . . . . . . . . 13  |-  ( ( F : R --> NN0  /\  c  e.  R )  ->  ( F `  c
)  e.  NN0 )
337, 31, 32syl2an 494 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( F `  c
)  e.  NN0 )
3433nn0red 11352 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( F `  c
)  e.  RR )
3530, 34ltnled 10184 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( ( # `  x
)  <  ( F `  c )  <->  -.  ( F `  c )  <_  ( # `  x
) ) )
3623, 35sylibd 229 . . . . . . . . 9  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( ( x C M )  C_  ( `' G " { c } )  ->  -.  ( F `  c )  <_  ( # `  x
) ) )
3721, 36sylanr2 685 . . . . . . . 8  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  e.  ~P ( 1 ... N ) ) )  ->  ( ( x C M )  C_  ( `' G " { c } )  ->  -.  ( F `  c )  <_  ( # `  x
) ) )
3837con2d 129 . . . . . . 7  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  e.  ~P ( 1 ... N ) ) )  ->  ( ( F `
 c )  <_ 
( # `  x )  ->  -.  ( x C M )  C_  ( `' G " { c } ) ) )
39 imnan 438 . . . . . . 7  |-  ( ( ( F `  c
)  <_  ( # `  x
)  ->  -.  (
x C M ) 
C_  ( `' G " { c } ) )  <->  -.  ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' G " { c } ) ) )
4038, 39sylib 208 . . . . . 6  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  e.  ~P ( 1 ... N ) ) )  ->  -.  ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' G " { c } ) ) )
4140pm2.21d 118 . . . . 5  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  e.  ~P ( 1 ... N ) ) )  ->  ( ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' G " { c } ) )  ->  -.  ( M Ramsey  F )  <_  N ) )
4241rexlimdvva 3038 . . . 4  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  ( E. c  e.  R  E. x  e. 
~P  ( 1 ... N ) ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' G " { c } ) )  ->  -.  ( M Ramsey  F )  <_  N ) )
4320, 42mpd 15 . . 3  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  -.  ( M Ramsey  F
)  <_  N )
4443pm2.01da 458 . 2  |-  ( ph  ->  -.  ( M Ramsey  F
)  <_  N )
458nn0red 11352 . . . 4  |-  ( ph  ->  N  e.  RR )
4645rexrd 10089 . . 3  |-  ( ph  ->  N  e.  RR* )
47 ramxrcl 15721 . . . 4  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  e.  RR* )
482, 4, 6, 47syl3anc 1326 . . 3  |-  ( ph  ->  ( M Ramsey  F )  e.  RR* )
49 xrltnle 10105 . . 3  |-  ( ( N  e.  RR*  /\  ( M Ramsey  F )  e.  RR* )  ->  ( N  < 
( M Ramsey  F )  <->  -.  ( M Ramsey  F )  <_  N ) )
5046, 48, 49syl2anc 693 . 2  |-  ( ph  ->  ( N  <  ( M Ramsey  F )  <->  -.  ( M Ramsey  F )  <_  N
) )
5144, 50mpbird 247 1  |-  ( ph  ->  N  <  ( M Ramsey  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   {csn 4177   class class class wbr 4653   `'ccnv 5113   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Fincfn 7955   1c1 9937   RR*cxr 10073    < clt 10074    <_ cle 10075   NN0cn0 11292   ...cfz 12326   #chash 13117   Ramsey cram 15703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-ram 15705
This theorem is referenced by:  0ram  15724  ram0  15726
  Copyright terms: Public domain W3C validator