MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stconst Structured version   Visualization version   Unicode version

Theorem 1stconst 7265
Description: The mapping of a restriction of the  1st function to a constant function. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
1stconst  |-  ( B  e.  V  ->  ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B } ) -1-1-onto-> A )

Proof of Theorem 1stconst
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnzg 4308 . . 3  |-  ( B  e.  V  ->  { B }  =/=  (/) )
2 fo1stres 7192 . . 3  |-  ( { B }  =/=  (/)  ->  ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B } ) -onto-> A )
31, 2syl 17 . 2  |-  ( B  e.  V  ->  ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B } ) -onto-> A )
4 moeq 3382 . . . . . 6  |-  E* x  x  =  <. y ,  B >.
54moani 2525 . . . . 5  |-  E* x
( y  e.  A  /\  x  =  <. y ,  B >. )
6 vex 3203 . . . . . . . 8  |-  y  e. 
_V
76brres 5402 . . . . . . 7  |-  ( x ( 1st  |`  ( A  X.  { B }
) ) y  <->  ( x 1st y  /\  x  e.  ( A  X.  { B } ) ) )
8 fo1st 7188 . . . . . . . . . . 11  |-  1st : _V -onto-> _V
9 fofn 6117 . . . . . . . . . . 11  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
108, 9ax-mp 5 . . . . . . . . . 10  |-  1st  Fn  _V
11 vex 3203 . . . . . . . . . 10  |-  x  e. 
_V
12 fnbrfvb 6236 . . . . . . . . . 10  |-  ( ( 1st  Fn  _V  /\  x  e.  _V )  ->  ( ( 1st `  x
)  =  y  <->  x 1st y ) )
1310, 11, 12mp2an 708 . . . . . . . . 9  |-  ( ( 1st `  x )  =  y  <->  x 1st y )
1413anbi1i 731 . . . . . . . 8  |-  ( ( ( 1st `  x
)  =  y  /\  x  e.  ( A  X.  { B } ) )  <->  ( x 1st y  /\  x  e.  ( A  X.  { B } ) ) )
15 elxp7 7201 . . . . . . . . . . 11  |-  ( x  e.  ( A  X.  { B } )  <->  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x )  e.  A  /\  ( 2nd `  x
)  e.  { B } ) ) )
16 eleq1 2689 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  x )  =  y  ->  (
( 1st `  x
)  e.  A  <->  y  e.  A ) )
1716biimpa 501 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  x
)  =  y  /\  ( 1st `  x )  e.  A )  -> 
y  e.  A )
1817adantrr 753 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  =  y  /\  ( ( 1st `  x
)  e.  A  /\  ( 2nd `  x )  e.  { B }
) )  ->  y  e.  A )
1918adantrl 752 . . . . . . . . . . . 12  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  A  /\  ( 2nd `  x )  e.  { B }
) ) )  -> 
y  e.  A )
20 elsni 4194 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  x )  e.  { B }  ->  ( 2nd `  x
)  =  B )
21 eqopi 7202 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( _V 
X.  _V )  /\  (
( 1st `  x
)  =  y  /\  ( 2nd `  x )  =  B ) )  ->  x  =  <. y ,  B >. )
2221an12s 843 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( 2nd `  x )  =  B ) )  ->  x  =  <. y ,  B >. )
2320, 22sylanr2 685 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( 2nd `  x )  e.  { B }
) )  ->  x  =  <. y ,  B >. )
2423adantrrl 760 . . . . . . . . . . . 12  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  A  /\  ( 2nd `  x )  e.  { B }
) ) )  ->  x  =  <. y ,  B >. )
2519, 24jca 554 . . . . . . . . . . 11  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  A  /\  ( 2nd `  x )  e.  { B }
) ) )  -> 
( y  e.  A  /\  x  =  <. y ,  B >. )
)
2615, 25sylan2b 492 . . . . . . . . . 10  |-  ( ( ( 1st `  x
)  =  y  /\  x  e.  ( A  X.  { B } ) )  ->  ( y  e.  A  /\  x  =  <. y ,  B >. ) )
2726adantl 482 . . . . . . . . 9  |-  ( ( B  e.  V  /\  ( ( 1st `  x
)  =  y  /\  x  e.  ( A  X.  { B } ) ) )  ->  (
y  e.  A  /\  x  =  <. y ,  B >. ) )
28 simprr 796 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  x  =  <. y ,  B >. )
2928fveq2d 6195 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  ( 1st `  x )  =  ( 1st `  <. y ,  B >. ) )
30 simprl 794 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  y  e.  A )
31 simpl 473 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  B  e.  V )
32 op1stg 7180 . . . . . . . . . . . 12  |-  ( ( y  e.  A  /\  B  e.  V )  ->  ( 1st `  <. y ,  B >. )  =  y )
3330, 31, 32syl2anc 693 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  ( 1st ` 
<. y ,  B >. )  =  y )
3429, 33eqtrd 2656 . . . . . . . . . 10  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  ( 1st `  x )  =  y )
35 snidg 4206 . . . . . . . . . . . . 13  |-  ( B  e.  V  ->  B  e.  { B } )
3635adantr 481 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  B  e.  { B } )
37 opelxpi 5148 . . . . . . . . . . . 12  |-  ( ( y  e.  A  /\  B  e.  { B } )  ->  <. y ,  B >.  e.  ( A  X.  { B }
) )
3830, 36, 37syl2anc 693 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  <. y ,  B >.  e.  ( A  X.  { B }
) )
3928, 38eqeltrd 2701 . . . . . . . . . 10  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  x  e.  ( A  X.  { B } ) )
4034, 39jca 554 . . . . . . . . 9  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  ( ( 1st `  x )  =  y  /\  x  e.  ( A  X.  { B } ) ) )
4127, 40impbida 877 . . . . . . . 8  |-  ( B  e.  V  ->  (
( ( 1st `  x
)  =  y  /\  x  e.  ( A  X.  { B } ) )  <->  ( y  e.  A  /\  x  = 
<. y ,  B >. ) ) )
4214, 41syl5bbr 274 . . . . . . 7  |-  ( B  e.  V  ->  (
( x 1st y  /\  x  e.  ( A  X.  { B }
) )  <->  ( y  e.  A  /\  x  =  <. y ,  B >. ) ) )
437, 42syl5bb 272 . . . . . 6  |-  ( B  e.  V  ->  (
x ( 1st  |`  ( A  X.  { B }
) ) y  <->  ( y  e.  A  /\  x  =  <. y ,  B >. ) ) )
4443mobidv 2491 . . . . 5  |-  ( B  e.  V  ->  ( E* x  x ( 1st  |`  ( A  X.  { B } ) ) y  <->  E* x ( y  e.  A  /\  x  =  <. y ,  B >. ) ) )
455, 44mpbiri 248 . . . 4  |-  ( B  e.  V  ->  E* x  x ( 1st  |`  ( A  X.  { B }
) ) y )
4645alrimiv 1855 . . 3  |-  ( B  e.  V  ->  A. y E* x  x ( 1st  |`  ( A  X.  { B } ) ) y )
47 funcnv2 5957 . . 3  |-  ( Fun  `' ( 1st  |`  ( A  X.  { B }
) )  <->  A. y E* x  x ( 1st  |`  ( A  X.  { B } ) ) y )
4846, 47sylibr 224 . 2  |-  ( B  e.  V  ->  Fun  `' ( 1st  |`  ( A  X.  { B }
) ) )
49 dff1o3 6143 . 2  |-  ( ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B }
)
-1-1-onto-> A 
<->  ( ( 1st  |`  ( A  X.  { B }
) ) : ( A  X.  { B } ) -onto-> A  /\  Fun  `' ( 1st  |`  ( A  X.  { B }
) ) ) )
503, 48, 49sylanbrc 698 1  |-  ( B  e.  V  ->  ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B } ) -1-1-onto-> A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   E*wmo 2471    =/= wne 2794   _Vcvv 3200   (/)c0 3915   {csn 4177   <.cop 4183   class class class wbr 4653    X. cxp 5112   `'ccnv 5113    |` cres 5116   Fun wfun 5882    Fn wfn 5883   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  curry2  7272  domss2  8119  fv1stcnv  31680
  Copyright terms: Public domain W3C validator