| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syldanl | Structured version Visualization version Unicode version | ||
| Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011.) |
| Ref | Expression |
|---|---|
| syldanl.1 |
|
| syldanl.2 |
|
| Ref | Expression |
|---|---|
| syldanl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syldanl.1 |
. . . 4
| |
| 2 | 1 | ex 450 |
. . 3
|
| 3 | 2 | imdistani 726 |
. 2
|
| 4 | syldanl.2 |
. 2
| |
| 5 | 3, 4 | sylan 488 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: trust 22033 submateq 29875 heibor1lem 33608 idlnegcl 33821 igenmin 33863 binomcxplemnotnn0 38555 vonioolem1 40894 vonicclem1 40897 smfsuplem1 41017 smflimsuplem4 41029 |
| Copyright terms: Public domain | W3C validator |