MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trust Structured version   Visualization version   Unicode version

Theorem trust 22033
Description: The trace of a uniform structure  U on a subset  A is a uniform structure on  A. Definition 3 of [BourbakiTop1] p. II.9. (Contributed by Thierry Arnoux, 2-Dec-2017.)
Assertion
Ref Expression
trust  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  ( Ut  ( A  X.  A
) )  e.  (UnifOn `  A ) )

Proof of Theorem trust
Dummy variables  v  u  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restsspw 16092 . . . 4  |-  ( Ut  ( A  X.  A ) )  C_  ~P ( A  X.  A )
21a1i 11 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  ( Ut  ( A  X.  A
) )  C_  ~P ( A  X.  A
) )
3 inxp 5254 . . . . . 6  |-  ( ( X  X.  X )  i^i  ( A  X.  A ) )  =  ( ( X  i^i  A )  X.  ( X  i^i  A ) )
4 sseqin2 3817 . . . . . . . 8  |-  ( A 
C_  X  <->  ( X  i^i  A )  =  A )
54biimpi 206 . . . . . . 7  |-  ( A 
C_  X  ->  ( X  i^i  A )  =  A )
65sqxpeqd 5141 . . . . . 6  |-  ( A 
C_  X  ->  (
( X  i^i  A
)  X.  ( X  i^i  A ) )  =  ( A  X.  A ) )
73, 6syl5eq 2668 . . . . 5  |-  ( A 
C_  X  ->  (
( X  X.  X
)  i^i  ( A  X.  A ) )  =  ( A  X.  A
) )
87adantl 482 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  (
( X  X.  X
)  i^i  ( A  X.  A ) )  =  ( A  X.  A
) )
9 simpl 473 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  U  e.  (UnifOn `  X )
)
10 elfvex 6221 . . . . . . . 8  |-  ( U  e.  (UnifOn `  X
)  ->  X  e.  _V )
1110adantr 481 . . . . . . 7  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  X  e.  _V )
12 simpr 477 . . . . . . 7  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  A  C_  X )
1311, 12ssexd 4805 . . . . . 6  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  A  e.  _V )
14 xpexg 6960 . . . . . 6  |-  ( ( A  e.  _V  /\  A  e.  _V )  ->  ( A  X.  A
)  e.  _V )
1513, 13, 14syl2anc 693 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  ( A  X.  A )  e. 
_V )
16 ustbasel 22010 . . . . . 6  |-  ( U  e.  (UnifOn `  X
)  ->  ( X  X.  X )  e.  U
)
1716adantr 481 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  ( X  X.  X )  e.  U )
18 elrestr 16089 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V  /\  ( X  X.  X )  e.  U
)  ->  ( ( X  X.  X )  i^i  ( A  X.  A
) )  e.  ( Ut  ( A  X.  A
) ) )
199, 15, 17, 18syl3anc 1326 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  (
( X  X.  X
)  i^i  ( A  X.  A ) )  e.  ( Ut  ( A  X.  A ) ) )
208, 19eqeltrrd 2702 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  ( A  X.  A )  e.  ( Ut  ( A  X.  A ) ) )
219ad5antr 770 . . . . . . . . 9  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  U  e.  (UnifOn `  X
) )
2215ad5antr 770 . . . . . . . . 9  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
( A  X.  A
)  e.  _V )
23 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  u  e.  U )
24 simp-4r 807 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  w  e.  ~P ( A  X.  A ) )
2524elpwid 4170 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  w  C_  ( A  X.  A ) )
2612ad5antr 770 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  A  C_  X )
27 xpss12 5225 . . . . . . . . . . . . . 14  |-  ( ( A  C_  X  /\  A  C_  X )  -> 
( A  X.  A
)  C_  ( X  X.  X ) )
2826, 26, 27syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
( A  X.  A
)  C_  ( X  X.  X ) )
2925, 28sstrd 3613 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  w  C_  ( X  X.  X ) )
30 ustssxp 22008 . . . . . . . . . . . . 13  |-  ( ( U  e.  (UnifOn `  X )  /\  u  e.  U )  ->  u  C_  ( X  X.  X
) )
3121, 23, 30syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  u  C_  ( X  X.  X ) )
3229, 31unssd 3789 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
( w  u.  u
)  C_  ( X  X.  X ) )
33 ssun2 3777 . . . . . . . . . . . 12  |-  u  C_  ( w  u.  u
)
34 ustssel 22009 . . . . . . . . . . . 12  |-  ( ( U  e.  (UnifOn `  X )  /\  u  e.  U  /\  (
w  u.  u ) 
C_  ( X  X.  X ) )  -> 
( u  C_  (
w  u.  u )  ->  ( w  u.  u )  e.  U
) )
3533, 34mpi 20 . . . . . . . . . . 11  |-  ( ( U  e.  (UnifOn `  X )  /\  u  e.  U  /\  (
w  u.  u ) 
C_  ( X  X.  X ) )  -> 
( w  u.  u
)  e.  U )
3621, 23, 32, 35syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
( w  u.  u
)  e.  U )
37 df-ss 3588 . . . . . . . . . . . . . 14  |-  ( w 
C_  ( A  X.  A )  <->  ( w  i^i  ( A  X.  A
) )  =  w )
3825, 37sylib 208 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
( w  i^i  ( A  X.  A ) )  =  w )
3938uneq1d 3766 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
( ( w  i^i  ( A  X.  A
) )  u.  (
u  i^i  ( A  X.  A ) ) )  =  ( w  u.  ( u  i^i  ( A  X.  A ) ) ) )
40 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
v  =  ( u  i^i  ( A  X.  A ) ) )
41 simpllr 799 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
v  C_  w )
4240, 41eqsstr3d 3640 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
( u  i^i  ( A  X.  A ) ) 
C_  w )
43 ssequn2 3786 . . . . . . . . . . . . 13  |-  ( ( u  i^i  ( A  X.  A ) ) 
C_  w  <->  ( w  u.  ( u  i^i  ( A  X.  A ) ) )  =  w )
4442, 43sylib 208 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
( w  u.  (
u  i^i  ( A  X.  A ) ) )  =  w )
4539, 44eqtr2d 2657 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  w  =  ( (
w  i^i  ( A  X.  A ) )  u.  ( u  i^i  ( A  X.  A ) ) ) )
46 indir 3875 . . . . . . . . . . 11  |-  ( ( w  u.  u )  i^i  ( A  X.  A ) )  =  ( ( w  i^i  ( A  X.  A
) )  u.  (
u  i^i  ( A  X.  A ) ) )
4745, 46syl6eqr 2674 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  w  =  ( (
w  u.  u )  i^i  ( A  X.  A ) ) )
48 ineq1 3807 . . . . . . . . . . . 12  |-  ( x  =  ( w  u.  u )  ->  (
x  i^i  ( A  X.  A ) )  =  ( ( w  u.  u )  i^i  ( A  X.  A ) ) )
4948eqeq2d 2632 . . . . . . . . . . 11  |-  ( x  =  ( w  u.  u )  ->  (
w  =  ( x  i^i  ( A  X.  A ) )  <->  w  =  ( ( w  u.  u )  i^i  ( A  X.  A ) ) ) )
5049rspcev 3309 . . . . . . . . . 10  |-  ( ( ( w  u.  u
)  e.  U  /\  w  =  ( (
w  u.  u )  i^i  ( A  X.  A ) ) )  ->  E. x  e.  U  w  =  ( x  i^i  ( A  X.  A
) ) )
5136, 47, 50syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  E. x  e.  U  w  =  ( x  i^i  ( A  X.  A
) ) )
52 elrest 16088 . . . . . . . . . 10  |-  ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  ->  (
w  e.  ( Ut  ( A  X.  A ) )  <->  E. x  e.  U  w  =  ( x  i^i  ( A  X.  A
) ) ) )
5352biimpar 502 . . . . . . . . 9  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  /\  E. x  e.  U  w  =  ( x  i^i  ( A  X.  A
) ) )  ->  w  e.  ( Ut  ( A  X.  A ) ) )
5421, 22, 51, 53syl21anc 1325 . . . . . . . 8  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  w  e.  ( Ut  ( A  X.  A ) ) )
55 elrest 16088 . . . . . . . . . . 11  |-  ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  ->  (
v  e.  ( Ut  ( A  X.  A ) )  <->  E. u  e.  U  v  =  ( u  i^i  ( A  X.  A
) ) ) )
5655biimpa 501 . . . . . . . . . 10  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  E. u  e.  U  v  =  ( u  i^i  ( A  X.  A
) ) )
5715, 56syldanl 735 . . . . . . . . 9  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  E. u  e.  U  v  =  ( u  i^i  ( A  X.  A
) ) )
5857ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  ->  E. u  e.  U  v  =  ( u  i^i  ( A  X.  A ) ) )
5954, 58r19.29a 3078 . . . . . . 7  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  ->  w  e.  ( Ut  ( A  X.  A ) ) )
6059ex 450 . . . . . 6  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A
) ) )  /\  w  e.  ~P ( A  X.  A ) )  ->  ( v  C_  w  ->  w  e.  ( Ut  ( A  X.  A
) ) ) )
6160ralrimiva 2966 . . . . 5  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  A. w  e.  ~P  ( A  X.  A
) ( v  C_  w  ->  w  e.  ( Ut  ( A  X.  A
) ) ) )
629ad5antr 770 . . . . . . . 8  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  U  e.  (UnifOn `  X ) )
6315ad5antr 770 . . . . . . . 8  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  ( A  X.  A )  e.  _V )
64 simpllr 799 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  u  e.  U
)
65 simplr 792 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  x  e.  U
)
66 ustincl 22011 . . . . . . . . . 10  |-  ( ( U  e.  (UnifOn `  X )  /\  u  e.  U  /\  x  e.  U )  ->  (
u  i^i  x )  e.  U )
6762, 64, 65, 66syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  ( u  i^i  x )  e.  U
)
68 simprl 794 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  v  =  ( u  i^i  ( A  X.  A ) ) )
69 simprr 796 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  w  =  ( x  i^i  ( A  X.  A ) ) )
7068, 69ineq12d 3815 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  ( v  i^i  w )  =  ( ( u  i^i  ( A  X.  A ) )  i^i  ( x  i^i  ( A  X.  A
) ) ) )
71 inindir 3831 . . . . . . . . . 10  |-  ( ( u  i^i  x )  i^i  ( A  X.  A ) )  =  ( ( u  i^i  ( A  X.  A
) )  i^i  (
x  i^i  ( A  X.  A ) ) )
7270, 71syl6eqr 2674 . . . . . . . . 9  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  ( v  i^i  w )  =  ( ( u  i^i  x
)  i^i  ( A  X.  A ) ) )
73 ineq1 3807 . . . . . . . . . . 11  |-  ( y  =  ( u  i^i  x )  ->  (
y  i^i  ( A  X.  A ) )  =  ( ( u  i^i  x )  i^i  ( A  X.  A ) ) )
7473eqeq2d 2632 . . . . . . . . . 10  |-  ( y  =  ( u  i^i  x )  ->  (
( v  i^i  w
)  =  ( y  i^i  ( A  X.  A ) )  <->  ( v  i^i  w )  =  ( ( u  i^i  x
)  i^i  ( A  X.  A ) ) ) )
7574rspcev 3309 . . . . . . . . 9  |-  ( ( ( u  i^i  x
)  e.  U  /\  ( v  i^i  w
)  =  ( ( u  i^i  x )  i^i  ( A  X.  A ) ) )  ->  E. y  e.  U  ( v  i^i  w
)  =  ( y  i^i  ( A  X.  A ) ) )
7667, 72, 75syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  E. y  e.  U  ( v  i^i  w
)  =  ( y  i^i  ( A  X.  A ) ) )
77 elrest 16088 . . . . . . . . 9  |-  ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  ->  (
( v  i^i  w
)  e.  ( Ut  ( A  X.  A ) )  <->  E. y  e.  U  ( v  i^i  w
)  =  ( y  i^i  ( A  X.  A ) ) ) )
7877biimpar 502 . . . . . . . 8  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  /\  E. y  e.  U  (
v  i^i  w )  =  ( y  i^i  ( A  X.  A
) ) )  -> 
( v  i^i  w
)  e.  ( Ut  ( A  X.  A ) ) )
7962, 63, 76, 78syl21anc 1325 . . . . . . 7  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  ( v  i^i  w )  e.  ( Ut  ( A  X.  A
) ) )
8057adantr 481 . . . . . . . 8  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A
) ) )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  E. u  e.  U  v  =  ( u  i^i  ( A  X.  A ) ) )
819ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A
) ) )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  U  e.  (UnifOn `  X ) )
8215ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A
) ) )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  ( A  X.  A )  e.  _V )
83 simpr 477 . . . . . . . . 9  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A
) ) )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  w  e.  ( Ut  ( A  X.  A ) ) )
8452biimpa 501 . . . . . . . . 9  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  E. x  e.  U  w  =  ( x  i^i  ( A  X.  A
) ) )
8581, 82, 83, 84syl21anc 1325 . . . . . . . 8  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A
) ) )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  E. x  e.  U  w  =  ( x  i^i  ( A  X.  A ) ) )
86 reeanv 3107 . . . . . . . 8  |-  ( E. u  e.  U  E. x  e.  U  (
v  =  ( u  i^i  ( A  X.  A ) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) )  <->  ( E. u  e.  U  v  =  ( u  i^i  ( A  X.  A
) )  /\  E. x  e.  U  w  =  ( x  i^i  ( A  X.  A
) ) ) )
8780, 85, 86sylanbrc 698 . . . . . . 7  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A
) ) )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  E. u  e.  U  E. x  e.  U  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )
8879, 87r19.29vva 3081 . . . . . 6  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A
) ) )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  ( v  i^i  w )  e.  ( Ut  ( A  X.  A
) ) )
8988ralrimiva 2966 . . . . 5  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  A. w  e.  ( Ut  ( A  X.  A
) ) ( v  i^i  w )  e.  ( Ut  ( A  X.  A ) ) )
90 simp-4l 806 . . . . . . . . . 10  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  U  e.  (UnifOn `  X ) )
91 simplr 792 . . . . . . . . . 10  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  u  e.  U )
92 ustdiag 22012 . . . . . . . . . 10  |-  ( ( U  e.  (UnifOn `  X )  /\  u  e.  U )  ->  (  _I  |`  X )  C_  u )
9390, 91, 92syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  (  _I  |`  X )  C_  u
)
94 simp-4r 807 . . . . . . . . 9  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  A  C_  X
)
95 inss1 3833 . . . . . . . . . . . . . 14  |-  ( (  _I  |`  X )  i^i  ( A  X.  A
) )  C_  (  _I  |`  X )
96 resss 5422 . . . . . . . . . . . . . 14  |-  (  _I  |`  X )  C_  _I
9795, 96sstri 3612 . . . . . . . . . . . . 13  |-  ( (  _I  |`  X )  i^i  ( A  X.  A
) )  C_  _I
98 iss 5447 . . . . . . . . . . . . 13  |-  ( ( (  _I  |`  X )  i^i  ( A  X.  A ) )  C_  _I 
<->  ( (  _I  |`  X )  i^i  ( A  X.  A ) )  =  (  _I  |`  dom  (
(  _I  |`  X )  i^i  ( A  X.  A ) ) ) )
9997, 98mpbi 220 . . . . . . . . . . . 12  |-  ( (  _I  |`  X )  i^i  ( A  X.  A
) )  =  (  _I  |`  dom  ( (  _I  |`  X )  i^i  ( A  X.  A
) ) )
100 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( A  C_  X  /\  u  e.  A )  ->  u  e.  A )
101 ssel2 3598 . . . . . . . . . . . . . . . . 17  |-  ( ( A  C_  X  /\  u  e.  A )  ->  u  e.  X )
102 equid 1939 . . . . . . . . . . . . . . . . . 18  |-  u  =  u
103 resieq 5407 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  X  /\  u  e.  X )  ->  ( u (  _I  |`  X ) u  <->  u  =  u ) )
104102, 103mpbiri 248 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  X  /\  u  e.  X )  ->  u (  _I  |`  X ) u )
105101, 101, 104syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( A  C_  X  /\  u  e.  A )  ->  u (  _I  |`  X ) u )
106 breq2 4657 . . . . . . . . . . . . . . . . 17  |-  ( v  =  u  ->  (
u (  _I  |`  X ) v  <->  u (  _I  |`  X ) u ) )
107106rspcev 3309 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  A  /\  u (  _I  |`  X ) u )  ->  E. v  e.  A  u (  _I  |`  X ) v )
108100, 105, 107syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  X  /\  u  e.  A )  ->  E. v  e.  A  u (  _I  |`  X ) v )
109108ralrimiva 2966 . . . . . . . . . . . . . 14  |-  ( A 
C_  X  ->  A. u  e.  A  E. v  e.  A  u (  _I  |`  X ) v )
110 dminxp 5574 . . . . . . . . . . . . . 14  |-  ( dom  ( (  _I  |`  X )  i^i  ( A  X.  A ) )  =  A  <->  A. u  e.  A  E. v  e.  A  u (  _I  |`  X ) v )
111109, 110sylibr 224 . . . . . . . . . . . . 13  |-  ( A 
C_  X  ->  dom  ( (  _I  |`  X )  i^i  ( A  X.  A ) )  =  A )
112111reseq2d 5396 . . . . . . . . . . . 12  |-  ( A 
C_  X  ->  (  _I  |`  dom  ( (  _I  |`  X )  i^i  ( A  X.  A
) ) )  =  (  _I  |`  A ) )
11399, 112syl5req 2669 . . . . . . . . . . 11  |-  ( A 
C_  X  ->  (  _I  |`  A )  =  ( (  _I  |`  X )  i^i  ( A  X.  A ) ) )
114113adantl 482 . . . . . . . . . 10  |-  ( ( (  _I  |`  X ) 
C_  u  /\  A  C_  X )  ->  (  _I  |`  A )  =  ( (  _I  |`  X )  i^i  ( A  X.  A ) ) )
115 ssrin 3838 . . . . . . . . . . 11  |-  ( (  _I  |`  X )  C_  u  ->  ( (  _I  |`  X )  i^i  ( A  X.  A
) )  C_  (
u  i^i  ( A  X.  A ) ) )
116115adantr 481 . . . . . . . . . 10  |-  ( ( (  _I  |`  X ) 
C_  u  /\  A  C_  X )  ->  (
(  _I  |`  X )  i^i  ( A  X.  A ) )  C_  ( u  i^i  ( A  X.  A ) ) )
117114, 116eqsstrd 3639 . . . . . . . . 9  |-  ( ( (  _I  |`  X ) 
C_  u  /\  A  C_  X )  ->  (  _I  |`  A )  C_  ( u  i^i  ( A  X.  A ) ) )
11893, 94, 117syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  (  _I  |`  A )  C_  (
u  i^i  ( A  X.  A ) ) )
119 simpr 477 . . . . . . . 8  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  v  =  ( u  i^i  ( A  X.  A ) ) )
120118, 119sseqtr4d 3642 . . . . . . 7  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  (  _I  |`  A )  C_  v
)
121120, 57r19.29a 3078 . . . . . 6  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  (  _I  |`  A ) 
C_  v )
12215ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  ( A  X.  A )  e.  _V )
123 ustinvel 22013 . . . . . . . . . 10  |-  ( ( U  e.  (UnifOn `  X )  /\  u  e.  U )  ->  `' u  e.  U )
12490, 91, 123syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  `' u  e.  U )
125119cnveqd 5298 . . . . . . . . . 10  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  `' v  =  `' ( u  i^i  ( A  X.  A
) ) )
126 cnvin 5540 . . . . . . . . . . 11  |-  `' ( u  i^i  ( A  X.  A ) )  =  ( `' u  i^i  `' ( A  X.  A ) )
127 cnvxp 5551 . . . . . . . . . . . 12  |-  `' ( A  X.  A )  =  ( A  X.  A )
128127ineq2i 3811 . . . . . . . . . . 11  |-  ( `' u  i^i  `' ( A  X.  A ) )  =  ( `' u  i^i  ( A  X.  A ) )
129126, 128eqtri 2644 . . . . . . . . . 10  |-  `' ( u  i^i  ( A  X.  A ) )  =  ( `' u  i^i  ( A  X.  A
) )
130125, 129syl6eq 2672 . . . . . . . . 9  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  `' v  =  ( `' u  i^i  ( A  X.  A
) ) )
131 ineq1 3807 . . . . . . . . . . 11  |-  ( x  =  `' u  -> 
( x  i^i  ( A  X.  A ) )  =  ( `' u  i^i  ( A  X.  A
) ) )
132131eqeq2d 2632 . . . . . . . . . 10  |-  ( x  =  `' u  -> 
( `' v  =  ( x  i^i  ( A  X.  A ) )  <->  `' v  =  ( `' u  i^i  ( A  X.  A ) ) ) )
133132rspcev 3309 . . . . . . . . 9  |-  ( ( `' u  e.  U  /\  `' v  =  ( `' u  i^i  ( A  X.  A ) ) )  ->  E. x  e.  U  `' v  =  ( x  i^i  ( A  X.  A
) ) )
134124, 130, 133syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  E. x  e.  U  `' v  =  ( x  i^i  ( A  X.  A
) ) )
135 elrest 16088 . . . . . . . . 9  |-  ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  ->  ( `' v  e.  ( Ut  ( A  X.  A
) )  <->  E. x  e.  U  `' v  =  ( x  i^i  ( A  X.  A
) ) ) )
136135biimpar 502 . . . . . . . 8  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  /\  E. x  e.  U  `' v  =  ( x  i^i  ( A  X.  A
) ) )  ->  `' v  e.  ( Ut  ( A  X.  A
) ) )
13790, 122, 134, 136syl21anc 1325 . . . . . . 7  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  `' v  e.  ( Ut  ( A  X.  A ) ) )
138137, 57r19.29a 3078 . . . . . 6  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  `' v  e.  ( Ut  ( A  X.  A ) ) )
139 simp-4l 806 . . . . . . . . . . . 12  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  u  e.  U )  /\  x  e.  U )  /\  (
x  o.  x ) 
C_  u )  ->  U  e.  (UnifOn `  X
) )
14015ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  u  e.  U )  /\  x  e.  U )  /\  (
x  o.  x ) 
C_  u )  -> 
( A  X.  A
)  e.  _V )
141 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  u  e.  U )  /\  x  e.  U )  /\  (
x  o.  x ) 
C_  u )  ->  x  e.  U )
142 elrestr 16089 . . . . . . . . . . . 12  |-  ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V  /\  x  e.  U )  ->  (
x  i^i  ( A  X.  A ) )  e.  ( Ut  ( A  X.  A ) ) )
143139, 140, 141, 142syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  u  e.  U )  /\  x  e.  U )  /\  (
x  o.  x ) 
C_  u )  -> 
( x  i^i  ( A  X.  A ) )  e.  ( Ut  ( A  X.  A ) ) )
144 inss1 3833 . . . . . . . . . . . . . . 15  |-  ( x  i^i  ( A  X.  A ) )  C_  x
145 coss1 5277 . . . . . . . . . . . . . . . 16  |-  ( ( x  i^i  ( A  X.  A ) ) 
C_  x  ->  (
( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A
) ) )  C_  ( x  o.  (
x  i^i  ( A  X.  A ) ) ) )
146 coss2 5278 . . . . . . . . . . . . . . . 16  |-  ( ( x  i^i  ( A  X.  A ) ) 
C_  x  ->  (
x  o.  ( x  i^i  ( A  X.  A ) ) ) 
C_  ( x  o.  x ) )
147145, 146sstrd 3613 . . . . . . . . . . . . . . 15  |-  ( ( x  i^i  ( A  X.  A ) ) 
C_  x  ->  (
( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A
) ) )  C_  ( x  o.  x
) )
148144, 147ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A
) ) )  C_  ( x  o.  x
)
149 sstr 3611 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  i^i  ( A  X.  A
) )  o.  (
x  i^i  ( A  X.  A ) ) ) 
C_  ( x  o.  x )  /\  (
x  o.  x ) 
C_  u )  -> 
( ( x  i^i  ( A  X.  A
) )  o.  (
x  i^i  ( A  X.  A ) ) ) 
C_  u )
150148, 149mpan 706 . . . . . . . . . . . . 13  |-  ( ( x  o.  x ) 
C_  u  ->  (
( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A
) ) )  C_  u )
151150adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  u  e.  U )  /\  x  e.  U )  /\  (
x  o.  x ) 
C_  u )  -> 
( ( x  i^i  ( A  X.  A
) )  o.  (
x  i^i  ( A  X.  A ) ) ) 
C_  u )
152 inss2 3834 . . . . . . . . . . . . . . 15  |-  ( x  i^i  ( A  X.  A ) )  C_  ( A  X.  A
)
153 coss1 5277 . . . . . . . . . . . . . . . 16  |-  ( ( x  i^i  ( A  X.  A ) ) 
C_  ( A  X.  A )  ->  (
( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A
) ) )  C_  ( ( A  X.  A )  o.  (
x  i^i  ( A  X.  A ) ) ) )
154 coss2 5278 . . . . . . . . . . . . . . . 16  |-  ( ( x  i^i  ( A  X.  A ) ) 
C_  ( A  X.  A )  ->  (
( A  X.  A
)  o.  ( x  i^i  ( A  X.  A ) ) ) 
C_  ( ( A  X.  A )  o.  ( A  X.  A
) ) )
155153, 154sstrd 3613 . . . . . . . . . . . . . . 15  |-  ( ( x  i^i  ( A  X.  A ) ) 
C_  ( A  X.  A )  ->  (
( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A
) ) )  C_  ( ( A  X.  A )  o.  ( A  X.  A ) ) )
156152, 155ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A
) ) )  C_  ( ( A  X.  A )  o.  ( A  X.  A ) )
157 xpidtr 5518 . . . . . . . . . . . . . 14  |-  ( ( A  X.  A )  o.  ( A  X.  A ) )  C_  ( A  X.  A
)
158156, 157sstri 3612 . . . . . . . . . . . . 13  |-  ( ( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A
) ) )  C_  ( A  X.  A
)
159158a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  u  e.  U )  /\  x  e.  U )  /\  (
x  o.  x ) 
C_  u )  -> 
( ( x  i^i  ( A  X.  A
) )  o.  (
x  i^i  ( A  X.  A ) ) ) 
C_  ( A  X.  A ) )
160151, 159ssind 3837 . . . . . . . . . . 11  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  u  e.  U )  /\  x  e.  U )  /\  (
x  o.  x ) 
C_  u )  -> 
( ( x  i^i  ( A  X.  A
) )  o.  (
x  i^i  ( A  X.  A ) ) ) 
C_  ( u  i^i  ( A  X.  A
) ) )
161 id 22 . . . . . . . . . . . . . 14  |-  ( w  =  ( x  i^i  ( A  X.  A
) )  ->  w  =  ( x  i^i  ( A  X.  A
) ) )
162161, 161coeq12d 5286 . . . . . . . . . . . . 13  |-  ( w  =  ( x  i^i  ( A  X.  A
) )  ->  (
w  o.  w )  =  ( ( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A ) ) ) )
163162sseq1d 3632 . . . . . . . . . . . 12  |-  ( w  =  ( x  i^i  ( A  X.  A
) )  ->  (
( w  o.  w
)  C_  ( u  i^i  ( A  X.  A
) )  <->  ( (
x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A ) ) )  C_  ( u  i^i  ( A  X.  A
) ) ) )
164163rspcev 3309 . . . . . . . . . . 11  |-  ( ( ( x  i^i  ( A  X.  A ) )  e.  ( Ut  ( A  X.  A ) )  /\  ( ( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A ) ) )  C_  ( u  i^i  ( A  X.  A
) ) )  ->  E. w  e.  ( Ut  ( A  X.  A
) ) ( w  o.  w )  C_  ( u  i^i  ( A  X.  A ) ) )
165143, 160, 164syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  u  e.  U )  /\  x  e.  U )  /\  (
x  o.  x ) 
C_  u )  ->  E. w  e.  ( Ut  ( A  X.  A
) ) ( w  o.  w )  C_  ( u  i^i  ( A  X.  A ) ) )
166 ustexhalf 22014 . . . . . . . . . . 11  |-  ( ( U  e.  (UnifOn `  X )  /\  u  e.  U )  ->  E. x  e.  U  ( x  o.  x )  C_  u
)
167166adantlr 751 . . . . . . . . . 10  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  u  e.  U )  ->  E. x  e.  U  ( x  o.  x )  C_  u
)
168165, 167r19.29a 3078 . . . . . . . . 9  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  u  e.  U )  ->  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w ) 
C_  ( u  i^i  ( A  X.  A
) ) )
169168ad4ant13 1292 . . . . . . . 8  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w ) 
C_  ( u  i^i  ( A  X.  A
) ) )
170119sseq2d 3633 . . . . . . . . 9  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  ( (
w  o.  w ) 
C_  v  <->  ( w  o.  w )  C_  (
u  i^i  ( A  X.  A ) ) ) )
171170rexbidv 3052 . . . . . . . 8  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  ( E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w
)  C_  v  <->  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w ) 
C_  ( u  i^i  ( A  X.  A
) ) ) )
172169, 171mpbird 247 . . . . . . 7  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w ) 
C_  v )
173172, 57r19.29a 3078 . . . . . 6  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  E. w  e.  ( Ut  ( A  X.  A
) ) ( w  o.  w )  C_  v )
174121, 138, 1733jca 1242 . . . . 5  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  ( (  _I  |`  A )  C_  v  /\  `' v  e.  ( Ut  ( A  X.  A
) )  /\  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w
)  C_  v )
)
17561, 89, 1743jca 1242 . . . 4  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  ( A. w  e.  ~P  ( A  X.  A ) ( v 
C_  w  ->  w  e.  ( Ut  ( A  X.  A ) ) )  /\  A. w  e.  ( Ut  ( A  X.  A ) ) ( v  i^i  w )  e.  ( Ut  ( A  X.  A ) )  /\  ( (  _I  |`  A )  C_  v  /\  `' v  e.  ( Ut  ( A  X.  A
) )  /\  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w
)  C_  v )
) )
176175ralrimiva 2966 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  A. v  e.  ( Ut  ( A  X.  A ) ) ( A. w  e.  ~P  ( A  X.  A
) ( v  C_  w  ->  w  e.  ( Ut  ( A  X.  A
) ) )  /\  A. w  e.  ( Ut  ( A  X.  A ) ) ( v  i^i  w )  e.  ( Ut  ( A  X.  A
) )  /\  (
(  _I  |`  A ) 
C_  v  /\  `' v  e.  ( Ut  ( A  X.  A ) )  /\  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w ) 
C_  v ) ) )
1772, 20, 1763jca 1242 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  (
( Ut  ( A  X.  A ) )  C_  ~P ( A  X.  A
)  /\  ( A  X.  A )  e.  ( Ut  ( A  X.  A
) )  /\  A. v  e.  ( Ut  ( A  X.  A ) ) ( A. w  e. 
~P  ( A  X.  A ) ( v 
C_  w  ->  w  e.  ( Ut  ( A  X.  A ) ) )  /\  A. w  e.  ( Ut  ( A  X.  A ) ) ( v  i^i  w )  e.  ( Ut  ( A  X.  A ) )  /\  ( (  _I  |`  A )  C_  v  /\  `' v  e.  ( Ut  ( A  X.  A
) )  /\  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w
)  C_  v )
) ) )
178 isust 22007 . . 3  |-  ( A  e.  _V  ->  (
( Ut  ( A  X.  A ) )  e.  (UnifOn `  A )  <->  ( ( Ut  ( A  X.  A ) )  C_  ~P ( A  X.  A
)  /\  ( A  X.  A )  e.  ( Ut  ( A  X.  A
) )  /\  A. v  e.  ( Ut  ( A  X.  A ) ) ( A. w  e. 
~P  ( A  X.  A ) ( v 
C_  w  ->  w  e.  ( Ut  ( A  X.  A ) ) )  /\  A. w  e.  ( Ut  ( A  X.  A ) ) ( v  i^i  w )  e.  ( Ut  ( A  X.  A ) )  /\  ( (  _I  |`  A )  C_  v  /\  `' v  e.  ( Ut  ( A  X.  A
) )  /\  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w
)  C_  v )
) ) ) )
17913, 178syl 17 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  (
( Ut  ( A  X.  A ) )  e.  (UnifOn `  A )  <->  ( ( Ut  ( A  X.  A ) )  C_  ~P ( A  X.  A
)  /\  ( A  X.  A )  e.  ( Ut  ( A  X.  A
) )  /\  A. v  e.  ( Ut  ( A  X.  A ) ) ( A. w  e. 
~P  ( A  X.  A ) ( v 
C_  w  ->  w  e.  ( Ut  ( A  X.  A ) ) )  /\  A. w  e.  ( Ut  ( A  X.  A ) ) ( v  i^i  w )  e.  ( Ut  ( A  X.  A ) )  /\  ( (  _I  |`  A )  C_  v  /\  `' v  e.  ( Ut  ( A  X.  A
) )  /\  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w
)  C_  v )
) ) ) )
180177, 179mpbird 247 1  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  ( Ut  ( A  X.  A
) )  e.  (UnifOn `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653    _I cid 5023    X. cxp 5112   `'ccnv 5113   dom cdm 5114    |` cres 5116    o. ccom 5118   ` cfv 5888  (class class class)co 6650   ↾t crest 16081  UnifOncust 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-rest 16083  df-ust 22004
This theorem is referenced by:  restutop  22041  restutopopn  22042  ressust  22068  ressusp  22069  trcfilu  22098  cfiluweak  22099
  Copyright terms: Public domain W3C validator