MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  termoid Structured version   Visualization version   Unicode version

Theorem termoid 16656
Description: For a terminal object, the identity arrow is the one and only morphism of the object to the object itself. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
isinitoi.b  |-  B  =  ( Base `  C
)
isinitoi.h  |-  H  =  ( Hom  `  C
)
isinitoi.c  |-  ( ph  ->  C  e.  Cat )
Assertion
Ref Expression
termoid  |-  ( (
ph  /\  O  e.  (TermO `  C ) )  ->  ( O H O )  =  {
( ( Id `  C ) `  O
) } )

Proof of Theorem termoid
Dummy variables  h  o are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isinitoi.b . . 3  |-  B  =  ( Base `  C
)
2 isinitoi.h . . 3  |-  H  =  ( Hom  `  C
)
3 isinitoi.c . . 3  |-  ( ph  ->  C  e.  Cat )
41, 2, 3istermoi 16654 . 2  |-  ( (
ph  /\  O  e.  (TermO `  C ) )  ->  ( O  e.  B  /\  A. o  e.  B  E! h  h  e.  ( o H O ) ) )
5 oveq1 6657 . . . . . . . 8  |-  ( o  =  O  ->  (
o H O )  =  ( O H O ) )
65eleq2d 2687 . . . . . . 7  |-  ( o  =  O  ->  (
h  e.  ( o H O )  <->  h  e.  ( O H O ) ) )
76eubidv 2490 . . . . . 6  |-  ( o  =  O  ->  ( E! h  h  e.  ( o H O )  <->  E! h  h  e.  ( O H O ) ) )
87rspcv 3305 . . . . 5  |-  ( O  e.  B  ->  ( A. o  e.  B  E! h  h  e.  ( o H O )  ->  E! h  h  e.  ( O H O ) ) )
98adantl 482 . . . 4  |-  ( ( ( ph  /\  O  e.  (TermO `  C )
)  /\  O  e.  B )  ->  ( A. o  e.  B  E! h  h  e.  ( o H O )  ->  E! h  h  e.  ( O H O ) ) )
10 eusn 4265 . . . . 5  |-  ( E! h  h  e.  ( O H O )  <->  E. h ( O H O )  =  {
h } )
11 eqid 2622 . . . . . . . . 9  |-  ( Id
`  C )  =  ( Id `  C
)
123ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  O  e.  (TermO `  C )
)  /\  O  e.  B )  ->  C  e.  Cat )
13 simpr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  O  e.  (TermO `  C )
)  /\  O  e.  B )  ->  O  e.  B )
141, 2, 11, 12, 13catidcl 16343 . . . . . . . 8  |-  ( ( ( ph  /\  O  e.  (TermO `  C )
)  /\  O  e.  B )  ->  (
( Id `  C
) `  O )  e.  ( O H O ) )
15 fvex 6201 . . . . . . . . . . . . 13  |-  ( ( Id `  C ) `
 O )  e. 
_V
1615elsn 4192 . . . . . . . . . . . 12  |-  ( ( ( Id `  C
) `  O )  e.  { h }  <->  ( ( Id `  C ) `  O )  =  h )
17 eqcom 2629 . . . . . . . . . . . 12  |-  ( ( ( Id `  C
) `  O )  =  h  <->  h  =  (
( Id `  C
) `  O )
)
18 vex 3203 . . . . . . . . . . . . 13  |-  h  e. 
_V
19 sneqbg 4374 . . . . . . . . . . . . . 14  |-  ( h  e.  _V  ->  ( { h }  =  { ( ( Id
`  C ) `  O ) }  <->  h  =  ( ( Id `  C ) `  O
) ) )
2019bicomd 213 . . . . . . . . . . . . 13  |-  ( h  e.  _V  ->  (
h  =  ( ( Id `  C ) `
 O )  <->  { h }  =  { (
( Id `  C
) `  O ) } ) )
2118, 20ax-mp 5 . . . . . . . . . . . 12  |-  ( h  =  ( ( Id
`  C ) `  O )  <->  { h }  =  { (
( Id `  C
) `  O ) } )
2216, 17, 213bitri 286 . . . . . . . . . . 11  |-  ( ( ( Id `  C
) `  O )  e.  { h }  <->  { h }  =  { (
( Id `  C
) `  O ) } )
2322biimpi 206 . . . . . . . . . 10  |-  ( ( ( Id `  C
) `  O )  e.  { h }  ->  { h }  =  {
( ( Id `  C ) `  O
) } )
2423a1i 11 . . . . . . . . 9  |-  ( ( O H O )  =  { h }  ->  ( ( ( Id
`  C ) `  O )  e.  {
h }  ->  { h }  =  { (
( Id `  C
) `  O ) } ) )
25 eleq2 2690 . . . . . . . . 9  |-  ( ( O H O )  =  { h }  ->  ( ( ( Id
`  C ) `  O )  e.  ( O H O )  <-> 
( ( Id `  C ) `  O
)  e.  { h } ) )
26 eqeq1 2626 . . . . . . . . 9  |-  ( ( O H O )  =  { h }  ->  ( ( O H O )  =  {
( ( Id `  C ) `  O
) }  <->  { h }  =  { (
( Id `  C
) `  O ) } ) )
2724, 25, 263imtr4d 283 . . . . . . . 8  |-  ( ( O H O )  =  { h }  ->  ( ( ( Id
`  C ) `  O )  e.  ( O H O )  ->  ( O H O )  =  {
( ( Id `  C ) `  O
) } ) )
2814, 27syl5 34 . . . . . . 7  |-  ( ( O H O )  =  { h }  ->  ( ( ( ph  /\  O  e.  (TermO `  C ) )  /\  O  e.  B )  ->  ( O H O )  =  { ( ( Id `  C
) `  O ) } ) )
2928exlimiv 1858 . . . . . 6  |-  ( E. h ( O H O )  =  {
h }  ->  (
( ( ph  /\  O  e.  (TermO `  C
) )  /\  O  e.  B )  ->  ( O H O )  =  { ( ( Id
`  C ) `  O ) } ) )
3029com12 32 . . . . 5  |-  ( ( ( ph  /\  O  e.  (TermO `  C )
)  /\  O  e.  B )  ->  ( E. h ( O H O )  =  {
h }  ->  ( O H O )  =  { ( ( Id
`  C ) `  O ) } ) )
3110, 30syl5bi 232 . . . 4  |-  ( ( ( ph  /\  O  e.  (TermO `  C )
)  /\  O  e.  B )  ->  ( E! h  h  e.  ( O H O )  ->  ( O H O )  =  {
( ( Id `  C ) `  O
) } ) )
329, 31syld 47 . . 3  |-  ( ( ( ph  /\  O  e.  (TermO `  C )
)  /\  O  e.  B )  ->  ( A. o  e.  B  E! h  h  e.  ( o H O )  ->  ( O H O )  =  {
( ( Id `  C ) `  O
) } ) )
3332expimpd 629 . 2  |-  ( (
ph  /\  O  e.  (TermO `  C ) )  ->  ( ( O  e.  B  /\  A. o  e.  B  E! h  h  e.  (
o H O ) )  ->  ( O H O )  =  {
( ( Id `  C ) `  O
) } ) )
344, 33mpd 15 1  |-  ( (
ph  /\  O  e.  (TermO `  C ) )  ->  ( O H O )  =  {
( ( Id `  C ) `  O
) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470   A.wral 2912   _Vcvv 3200   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952   Catccat 16325   Idccid 16326  TermOctermo 16639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-cat 16329  df-cid 16330  df-termo 16642
This theorem is referenced by:  2termoinv  16667
  Copyright terms: Public domain W3C validator