| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > termoid | Structured version Visualization version Unicode version | ||
| Description: For a terminal object, the identity arrow is the one and only morphism of the object to the object itself. (Contributed by AV, 18-Apr-2020.) |
| Ref | Expression |
|---|---|
| isinitoi.b |
|
| isinitoi.h |
|
| isinitoi.c |
|
| Ref | Expression |
|---|---|
| termoid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinitoi.b |
. . 3
| |
| 2 | isinitoi.h |
. . 3
| |
| 3 | isinitoi.c |
. . 3
| |
| 4 | 1, 2, 3 | istermoi 16654 |
. 2
|
| 5 | oveq1 6657 |
. . . . . . . 8
| |
| 6 | 5 | eleq2d 2687 |
. . . . . . 7
|
| 7 | 6 | eubidv 2490 |
. . . . . 6
|
| 8 | 7 | rspcv 3305 |
. . . . 5
|
| 9 | 8 | adantl 482 |
. . . 4
|
| 10 | eusn 4265 |
. . . . 5
| |
| 11 | eqid 2622 |
. . . . . . . . 9
| |
| 12 | 3 | ad2antrr 762 |
. . . . . . . . 9
|
| 13 | simpr 477 |
. . . . . . . . 9
| |
| 14 | 1, 2, 11, 12, 13 | catidcl 16343 |
. . . . . . . 8
|
| 15 | fvex 6201 |
. . . . . . . . . . . . 13
| |
| 16 | 15 | elsn 4192 |
. . . . . . . . . . . 12
|
| 17 | eqcom 2629 |
. . . . . . . . . . . 12
| |
| 18 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 19 | sneqbg 4374 |
. . . . . . . . . . . . . 14
| |
| 20 | 19 | bicomd 213 |
. . . . . . . . . . . . 13
|
| 21 | 18, 20 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 22 | 16, 17, 21 | 3bitri 286 |
. . . . . . . . . . 11
|
| 23 | 22 | biimpi 206 |
. . . . . . . . . 10
|
| 24 | 23 | a1i 11 |
. . . . . . . . 9
|
| 25 | eleq2 2690 |
. . . . . . . . 9
| |
| 26 | eqeq1 2626 |
. . . . . . . . 9
| |
| 27 | 24, 25, 26 | 3imtr4d 283 |
. . . . . . . 8
|
| 28 | 14, 27 | syl5 34 |
. . . . . . 7
|
| 29 | 28 | exlimiv 1858 |
. . . . . 6
|
| 30 | 29 | com12 32 |
. . . . 5
|
| 31 | 10, 30 | syl5bi 232 |
. . . 4
|
| 32 | 9, 31 | syld 47 |
. . 3
|
| 33 | 32 | expimpd 629 |
. 2
|
| 34 | 4, 33 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-cat 16329 df-cid 16330 df-termo 16642 |
| This theorem is referenced by: 2termoinv 16667 |
| Copyright terms: Public domain | W3C validator |