MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2termoinv Structured version   Visualization version   Unicode version

Theorem 2termoinv 16667
Description: Morphisms between two terminal objects are inverses. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
termoeu1.c  |-  ( ph  ->  C  e.  Cat )
termoeu1.a  |-  ( ph  ->  A  e.  (TermO `  C ) )
termoeu1.b  |-  ( ph  ->  B  e.  (TermO `  C ) )
Assertion
Ref Expression
2termoinv  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  ->  F ( A (Inv
`  C ) B ) G )

Proof of Theorem 2termoinv
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
2 eqid 2622 . . . . 5  |-  ( Hom  `  C )  =  ( Hom  `  C )
3 eqid 2622 . . . . 5  |-  (comp `  C )  =  (comp `  C )
4 termoeu1.c . . . . . 6  |-  ( ph  ->  C  e.  Cat )
543ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  ->  C  e.  Cat )
6 termoeu1.a . . . . . . 7  |-  ( ph  ->  A  e.  (TermO `  C ) )
7 termoo 16658 . . . . . . 7  |-  ( C  e.  Cat  ->  ( A  e.  (TermO `  C
)  ->  A  e.  ( Base `  C )
) )
84, 6, 7sylc 65 . . . . . 6  |-  ( ph  ->  A  e.  ( Base `  C ) )
983ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  ->  A  e.  ( Base `  C ) )
10 termoeu1.b . . . . . . 7  |-  ( ph  ->  B  e.  (TermO `  C ) )
11 termoo 16658 . . . . . . 7  |-  ( C  e.  Cat  ->  ( B  e.  (TermO `  C
)  ->  B  e.  ( Base `  C )
) )
124, 10, 11sylc 65 . . . . . 6  |-  ( ph  ->  B  e.  ( Base `  C ) )
13123ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  ->  B  e.  ( Base `  C ) )
14 simp3 1063 . . . . 5  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  ->  F  e.  ( A
( Hom  `  C ) B ) )
15 simp2 1062 . . . . 5  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  ->  G  e.  ( B
( Hom  `  C ) A ) )
161, 2, 3, 5, 9, 13, 9, 14, 15catcocl 16346 . . . 4  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  -> 
( G ( <. A ,  B >. (comp `  C ) A ) F )  e.  ( A ( Hom  `  C
) A ) )
171, 2, 4termoid 16656 . . . . . . . 8  |-  ( (
ph  /\  A  e.  (TermO `  C ) )  ->  ( A ( Hom  `  C ) A )  =  {
( ( Id `  C ) `  A
) } )
186, 17mpdan 702 . . . . . . 7  |-  ( ph  ->  ( A ( Hom  `  C ) A )  =  { ( ( Id `  C ) `
 A ) } )
19183ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  -> 
( A ( Hom  `  C ) A )  =  { ( ( Id `  C ) `
 A ) } )
2019eleq2d 2687 . . . . 5  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  -> 
( ( G (
<. A ,  B >. (comp `  C ) A ) F )  e.  ( A ( Hom  `  C
) A )  <->  ( G
( <. A ,  B >. (comp `  C ) A ) F )  e.  { ( ( Id `  C ) `
 A ) } ) )
21 elsni 4194 . . . . 5  |-  ( ( G ( <. A ,  B >. (comp `  C
) A ) F )  e.  { ( ( Id `  C
) `  A ) }  ->  ( G (
<. A ,  B >. (comp `  C ) A ) F )  =  ( ( Id `  C
) `  A )
)
2220, 21syl6bi 243 . . . 4  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  -> 
( ( G (
<. A ,  B >. (comp `  C ) A ) F )  e.  ( A ( Hom  `  C
) A )  -> 
( G ( <. A ,  B >. (comp `  C ) A ) F )  =  ( ( Id `  C
) `  A )
) )
2316, 22mpd 15 . . 3  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  -> 
( G ( <. A ,  B >. (comp `  C ) A ) F )  =  ( ( Id `  C
) `  A )
)
24 eqid 2622 . . . 4  |-  ( Id
`  C )  =  ( Id `  C
)
25 eqid 2622 . . . 4  |-  (Sect `  C )  =  (Sect `  C )
261, 2, 3, 24, 25, 5, 9, 13, 14, 15issect2 16414 . . 3  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  -> 
( F ( A (Sect `  C ) B ) G  <->  ( G
( <. A ,  B >. (comp `  C ) A ) F )  =  ( ( Id
`  C ) `  A ) ) )
2723, 26mpbird 247 . 2  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  ->  F ( A (Sect `  C ) B ) G )
281, 2, 3, 5, 13, 9, 13, 15, 14catcocl 16346 . . . 4  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  -> 
( F ( <. B ,  A >. (comp `  C ) B ) G )  e.  ( B ( Hom  `  C
) B ) )
291, 2, 4termoid 16656 . . . . . . . 8  |-  ( (
ph  /\  B  e.  (TermO `  C ) )  ->  ( B ( Hom  `  C ) B )  =  {
( ( Id `  C ) `  B
) } )
3010, 29mpdan 702 . . . . . . 7  |-  ( ph  ->  ( B ( Hom  `  C ) B )  =  { ( ( Id `  C ) `
 B ) } )
31303ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  -> 
( B ( Hom  `  C ) B )  =  { ( ( Id `  C ) `
 B ) } )
3231eleq2d 2687 . . . . 5  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  -> 
( ( F (
<. B ,  A >. (comp `  C ) B ) G )  e.  ( B ( Hom  `  C
) B )  <->  ( F
( <. B ,  A >. (comp `  C ) B ) G )  e.  { ( ( Id `  C ) `
 B ) } ) )
33 elsni 4194 . . . . 5  |-  ( ( F ( <. B ,  A >. (comp `  C
) B ) G )  e.  { ( ( Id `  C
) `  B ) }  ->  ( F (
<. B ,  A >. (comp `  C ) B ) G )  =  ( ( Id `  C
) `  B )
)
3432, 33syl6bi 243 . . . 4  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  -> 
( ( F (
<. B ,  A >. (comp `  C ) B ) G )  e.  ( B ( Hom  `  C
) B )  -> 
( F ( <. B ,  A >. (comp `  C ) B ) G )  =  ( ( Id `  C
) `  B )
) )
3528, 34mpd 15 . . 3  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  -> 
( F ( <. B ,  A >. (comp `  C ) B ) G )  =  ( ( Id `  C
) `  B )
)
361, 2, 3, 24, 25, 5, 13, 9, 15, 14issect2 16414 . . 3  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  -> 
( G ( B (Sect `  C ) A ) F  <->  ( F
( <. B ,  A >. (comp `  C ) B ) G )  =  ( ( Id
`  C ) `  B ) ) )
3735, 36mpbird 247 . 2  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  ->  G ( B (Sect `  C ) A ) F )
38 eqid 2622 . . . 4  |-  (Inv `  C )  =  (Inv
`  C )
391, 38, 4, 8, 12, 25isinv 16420 . . 3  |-  ( ph  ->  ( F ( A (Inv `  C ) B ) G  <->  ( F
( A (Sect `  C ) B ) G  /\  G ( B (Sect `  C
) A ) F ) ) )
40393ad2ant1 1082 . 2  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  -> 
( F ( A (Inv `  C ) B ) G  <->  ( F
( A (Sect `  C ) B ) G  /\  G ( B (Sect `  C
) A ) F ) ) )
4127, 37, 40mpbir2and 957 1  |-  ( (
ph  /\  G  e.  ( B ( Hom  `  C
) A )  /\  F  e.  ( A
( Hom  `  C ) B ) )  ->  F ( A (Inv
`  C ) B ) G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {csn 4177   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326  Sectcsect 16404  Invcinv 16405  TermOctermo 16639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-termo 16642
This theorem is referenced by:  termoeu1  16668
  Copyright terms: Public domain W3C validator