Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tleile Structured version   Visualization version   Unicode version

Theorem tleile 29661
Description: In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypotheses
Ref Expression
tleile.b  |-  B  =  ( Base `  K
)
tleile.l  |-  .<_  =  ( le `  K )
Assertion
Ref Expression
tleile  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  \/  Y  .<_  X ) )

Proof of Theorem tleile
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1062 . 2  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
2 simp3 1063 . 2  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
3 tleile.b . . . . 5  |-  B  =  ( Base `  K
)
4 tleile.l . . . . 5  |-  .<_  =  ( le `  K )
53, 4istos 17035 . . . 4  |-  ( K  e. Toset 
<->  ( K  e.  Poset  /\ 
A. x  e.  B  A. y  e.  B  ( x  .<_  y  \/  y  .<_  x )
) )
65simprbi 480 . . 3  |-  ( K  e. Toset  ->  A. x  e.  B  A. y  e.  B  ( x  .<_  y  \/  y  .<_  x )
)
763ad2ant1 1082 . 2  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  A. x  e.  B  A. y  e.  B  ( x  .<_  y  \/  y  .<_  x ) )
8 breq1 4656 . . . 4  |-  ( x  =  X  ->  (
x  .<_  y  <->  X  .<_  y ) )
9 breq2 4657 . . . 4  |-  ( x  =  X  ->  (
y  .<_  x  <->  y  .<_  X ) )
108, 9orbi12d 746 . . 3  |-  ( x  =  X  ->  (
( x  .<_  y  \/  y  .<_  x )  <->  ( X  .<_  y  \/  y  .<_  X ) ) )
11 breq2 4657 . . . 4  |-  ( y  =  Y  ->  ( X  .<_  y  <->  X  .<_  Y ) )
12 breq1 4656 . . . 4  |-  ( y  =  Y  ->  (
y  .<_  X  <->  Y  .<_  X ) )
1311, 12orbi12d 746 . . 3  |-  ( y  =  Y  ->  (
( X  .<_  y  \/  y  .<_  X )  <->  ( X  .<_  Y  \/  Y  .<_  X ) ) )
1410, 13rspc2va 3323 . 2  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  \/  y  .<_  x ) )  -> 
( X  .<_  Y  \/  Y  .<_  X ) )
151, 2, 7, 14syl21anc 1325 1  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  \/  Y  .<_  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948   Posetcpo 16940  Tosetctos 17033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-toset 17034
This theorem is referenced by:  tltnle  29662  odutos  29663  trleile  29666
  Copyright terms: Public domain W3C validator