Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trleile Structured version   Visualization version   Unicode version

Theorem trleile 29666
Description: In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 12-Sep-2018.)
Hypotheses
Ref Expression
trleile.b  |-  B  =  ( Base `  K
)
trleile.l  |-  .<_  =  ( ( le `  K
)  i^i  ( B  X.  B ) )
Assertion
Ref Expression
trleile  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  \/  Y  .<_  X ) )

Proof of Theorem trleile
StepHypRef Expression
1 trleile.b . . . 4  |-  B  =  ( Base `  K
)
2 eqid 2622 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
31, 2tleile 29661 . . 3  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( le `  K ) Y  \/  Y ( le `  K ) X ) )
4 3simpc 1060 . . . . . 6  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  e.  B  /\  Y  e.  B )
)
5 brxp 5147 . . . . . 6  |-  ( X ( B  X.  B
) Y  <->  ( X  e.  B  /\  Y  e.  B ) )
64, 5sylibr 224 . . . . 5  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  X
( B  X.  B
) Y )
7 brin 4704 . . . . . 6  |-  ( X ( ( le `  K )  i^i  ( B  X.  B ) ) Y  <->  ( X ( le `  K ) Y  /\  X ( B  X.  B ) Y ) )
87rbaib 947 . . . . 5  |-  ( X ( B  X.  B
) Y  ->  ( X ( ( le
`  K )  i^i  ( B  X.  B
) ) Y  <->  X ( le `  K ) Y ) )
96, 8syl 17 . . . 4  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( ( le
`  K )  i^i  ( B  X.  B
) ) Y  <->  X ( le `  K ) Y ) )
104ancomd 467 . . . . . 6  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  e.  B  /\  X  e.  B )
)
11 brxp 5147 . . . . . 6  |-  ( Y ( B  X.  B
) X  <->  ( Y  e.  B  /\  X  e.  B ) )
1210, 11sylibr 224 . . . . 5  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  Y
( B  X.  B
) X )
13 brin 4704 . . . . . 6  |-  ( Y ( ( le `  K )  i^i  ( B  X.  B ) ) X  <->  ( Y ( le `  K ) X  /\  Y ( B  X.  B ) X ) )
1413rbaib 947 . . . . 5  |-  ( Y ( B  X.  B
) X  ->  ( Y ( ( le
`  K )  i^i  ( B  X.  B
) ) X  <->  Y ( le `  K ) X ) )
1512, 14syl 17 . . . 4  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y ( ( le
`  K )  i^i  ( B  X.  B
) ) X  <->  Y ( le `  K ) X ) )
169, 15orbi12d 746 . . 3  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X ( ( le `  K )  i^i  ( B  X.  B ) ) Y  \/  Y ( ( le `  K )  i^i  ( B  X.  B ) ) X )  <->  ( X ( le `  K ) Y  \/  Y ( le `  K ) X ) ) )
173, 16mpbird 247 . 2  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( ( le
`  K )  i^i  ( B  X.  B
) ) Y  \/  Y ( ( le
`  K )  i^i  ( B  X.  B
) ) X ) )
18 trleile.l . . . 4  |-  .<_  =  ( ( le `  K
)  i^i  ( B  X.  B ) )
1918breqi 4659 . . 3  |-  ( X 
.<_  Y  <->  X ( ( le
`  K )  i^i  ( B  X.  B
) ) Y )
2018breqi 4659 . . 3  |-  ( Y 
.<_  X  <->  Y ( ( le
`  K )  i^i  ( B  X.  B
) ) X )
2119, 20orbi12i 543 . 2  |-  ( ( X  .<_  Y  \/  Y  .<_  X )  <->  ( X
( ( le `  K )  i^i  ( B  X.  B ) ) Y  \/  Y ( ( le `  K
)  i^i  ( B  X.  B ) ) X ) )
2217, 21sylibr 224 1  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  \/  Y  .<_  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    i^i cin 3573   class class class wbr 4653    X. cxp 5112   ` cfv 5888   Basecbs 15857   lecple 15948  Tosetctos 17033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-iota 5851  df-fv 5896  df-toset 17034
This theorem is referenced by:  ordtrest2NEWlem  29968  ordtconnlem1  29970
  Copyright terms: Public domain W3C validator