| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trin | Structured version Visualization version Unicode version | ||
| Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.) |
| Ref | Expression |
|---|---|
| trin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3796 |
. . . . 5
| |
| 2 | trss 4761 |
. . . . . 6
| |
| 3 | trss 4761 |
. . . . . 6
| |
| 4 | 2, 3 | im2anan9 880 |
. . . . 5
|
| 5 | 1, 4 | syl5bi 232 |
. . . 4
|
| 6 | ssin 3835 |
. . . 4
| |
| 7 | 5, 6 | syl6ib 241 |
. . 3
|
| 8 | 7 | ralrimiv 2965 |
. 2
|
| 9 | dftr3 4756 |
. 2
| |
| 10 | 8, 9 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-in 3581 df-ss 3588 df-uni 4437 df-tr 4753 |
| This theorem is referenced by: ordin 5753 tcmin 8617 ingru 9637 gruina 9640 dfon2lem4 31691 |
| Copyright terms: Public domain | W3C validator |