MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordin Structured version   Visualization version   Unicode version

Theorem ordin 5753
Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
ordin  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )

Proof of Theorem ordin
StepHypRef Expression
1 ordtr 5737 . . 3  |-  ( Ord 
A  ->  Tr  A
)
2 ordtr 5737 . . 3  |-  ( Ord 
B  ->  Tr  B
)
3 trin 4763 . . 3  |-  ( ( Tr  A  /\  Tr  B )  ->  Tr  ( A  i^i  B ) )
41, 2, 3syl2an 494 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  Tr  ( A  i^i  B ) )
5 inss2 3834 . . 3  |-  ( A  i^i  B )  C_  B
6 trssord 5740 . . 3  |-  ( ( Tr  ( A  i^i  B )  /\  ( A  i^i  B )  C_  B  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )
75, 6mp3an2 1412 . 2  |-  ( ( Tr  ( A  i^i  B )  /\  Ord  B
)  ->  Ord  ( A  i^i  B ) )
84, 7sylancom 701 1  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    i^i cin 3573    C_ wss 3574   Tr wtr 4752   Ord word 5722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-in 3581  df-ss 3588  df-uni 4437  df-tr 4753  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726
This theorem is referenced by:  onin  5754  ordtri3or  5755  ordelinel  5825  ordelinelOLD  5826  smores  7449  smores2  7451  ordtypelem5  8427  ordtypelem7  8429
  Copyright terms: Public domain W3C validator