Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trrelsuperreldg Structured version   Visualization version   Unicode version

Theorem trrelsuperreldg 37960
Description: Concrete construction of a superclass of relation  R which is a transitive relation. (Contributed by Richard Penner, 25-Dec-2019.)
Hypotheses
Ref Expression
trrelsuperreldg.r  |-  ( ph  ->  Rel  R )
trrelsuperreldg.s  |-  ( ph  ->  S  =  ( dom 
R  X.  ran  R
) )
Assertion
Ref Expression
trrelsuperreldg  |-  ( ph  ->  ( R  C_  S  /\  ( S  o.  S
)  C_  S )
)

Proof of Theorem trrelsuperreldg
StepHypRef Expression
1 trrelsuperreldg.r . . . 4  |-  ( ph  ->  Rel  R )
2 relssdmrn 5656 . . . 4  |-  ( Rel 
R  ->  R  C_  ( dom  R  X.  ran  R
) )
31, 2syl 17 . . 3  |-  ( ph  ->  R  C_  ( dom  R  X.  ran  R ) )
4 trrelsuperreldg.s . . 3  |-  ( ph  ->  S  =  ( dom 
R  X.  ran  R
) )
53, 4sseqtr4d 3642 . 2  |-  ( ph  ->  R  C_  S )
6 xptrrel 13719 . . . 4  |-  ( ( dom  R  X.  ran  R )  o.  ( dom 
R  X.  ran  R
) )  C_  ( dom  R  X.  ran  R
)
76a1i 11 . . 3  |-  ( ph  ->  ( ( dom  R  X.  ran  R )  o.  ( dom  R  X.  ran  R ) )  C_  ( dom  R  X.  ran  R ) )
84, 4coeq12d 5286 . . 3  |-  ( ph  ->  ( S  o.  S
)  =  ( ( dom  R  X.  ran  R )  o.  ( dom 
R  X.  ran  R
) ) )
97, 8, 43sstr4d 3648 . 2  |-  ( ph  ->  ( S  o.  S
)  C_  S )
105, 9jca 554 1  |-  ( ph  ->  ( R  C_  S  /\  ( S  o.  S
)  C_  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    C_ wss 3574    X. cxp 5112   dom cdm 5114   ran crn 5115    o. ccom 5118   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator