MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xptrrel Structured version   Visualization version   Unicode version

Theorem xptrrel 13719
Description: The cross product is always a transitive relation. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
xptrrel  |-  ( ( A  X.  B )  o.  ( A  X.  B ) )  C_  ( A  X.  B
)

Proof of Theorem xptrrel
StepHypRef Expression
1 inss1 3833 . . . . . . . 8  |-  ( dom  ( A  X.  B
)  i^i  ran  ( A  X.  B ) ) 
C_  dom  ( A  X.  B )
2 dmxpss 5565 . . . . . . . 8  |-  dom  ( A  X.  B )  C_  A
31, 2sstri 3612 . . . . . . 7  |-  ( dom  ( A  X.  B
)  i^i  ran  ( A  X.  B ) ) 
C_  A
4 inss2 3834 . . . . . . . 8  |-  ( dom  ( A  X.  B
)  i^i  ran  ( A  X.  B ) ) 
C_  ran  ( A  X.  B )
5 rnxpss 5566 . . . . . . . 8  |-  ran  ( A  X.  B )  C_  B
64, 5sstri 3612 . . . . . . 7  |-  ( dom  ( A  X.  B
)  i^i  ran  ( A  X.  B ) ) 
C_  B
73, 6ssini 3836 . . . . . 6  |-  ( dom  ( A  X.  B
)  i^i  ran  ( A  X.  B ) ) 
C_  ( A  i^i  B )
8 eqimss 3657 . . . . . 6  |-  ( ( A  i^i  B )  =  (/)  ->  ( A  i^i  B )  C_  (/) )
97, 8syl5ss 3614 . . . . 5  |-  ( ( A  i^i  B )  =  (/)  ->  ( dom  ( A  X.  B
)  i^i  ran  ( A  X.  B ) ) 
C_  (/) )
10 ss0 3974 . . . . 5  |-  ( ( dom  ( A  X.  B )  i^i  ran  ( A  X.  B
) )  C_  (/)  ->  ( dom  ( A  X.  B
)  i^i  ran  ( A  X.  B ) )  =  (/) )
119, 10syl 17 . . . 4  |-  ( ( A  i^i  B )  =  (/)  ->  ( dom  ( A  X.  B
)  i^i  ran  ( A  X.  B ) )  =  (/) )
1211coemptyd 13718 . . 3  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  X.  B )  o.  ( A  X.  B ) )  =  (/) )
13 0ss 3972 . . 3  |-  (/)  C_  ( A  X.  B )
1412, 13syl6eqss 3655 . 2  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  X.  B )  o.  ( A  X.  B ) )  C_  ( A  X.  B
) )
15 df-ne 2795 . . . . 5  |-  ( ( A  i^i  B )  =/=  (/)  <->  -.  ( A  i^i  B )  =  (/) )
1615biimpri 218 . . . 4  |-  ( -.  ( A  i^i  B
)  =  (/)  ->  ( A  i^i  B )  =/=  (/) )
1716xpcoidgend 13714 . . 3  |-  ( -.  ( A  i^i  B
)  =  (/)  ->  (
( A  X.  B
)  o.  ( A  X.  B ) )  =  ( A  X.  B ) )
18 ssid 3624 . . 3  |-  ( A  X.  B )  C_  ( A  X.  B
)
1917, 18syl6eqss 3655 . 2  |-  ( -.  ( A  i^i  B
)  =  (/)  ->  (
( A  X.  B
)  o.  ( A  X.  B ) ) 
C_  ( A  X.  B ) )
2014, 19pm2.61i 176 1  |-  ( ( A  X.  B )  o.  ( A  X.  B ) )  C_  ( A  X.  B
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    =/= wne 2794    i^i cin 3573    C_ wss 3574   (/)c0 3915    X. cxp 5112   dom cdm 5114   ran crn 5115    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by:  trclublem  13734  trclubgNEW  37925  trclexi  37927  cnvtrcl0  37933  xpintrreld  37958  trrelsuperreldg  37960  trrelsuperrel2dg  37963
  Copyright terms: Public domain W3C validator