Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txpss3v Structured version   Visualization version   Unicode version

Theorem txpss3v 31985
Description: A tail Cartesian product is a subset of the class of ordered triples. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
txpss3v  |-  ( A 
(x)  B )  C_  ( _V  X.  ( _V  X.  _V ) )

Proof of Theorem txpss3v
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-txp 31961 . 2  |-  ( A 
(x)  B )  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B ) )
2 inss1 3833 . . 3  |-  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B
) )  C_  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )
3 relco 5633 . . . 4  |-  Rel  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )
4 vex 3203 . . . . . . . . 9  |-  z  e. 
_V
5 vex 3203 . . . . . . . . 9  |-  y  e. 
_V
64, 5brcnv 5305 . . . . . . . 8  |-  ( z `' ( 1st  |`  ( _V  X.  _V ) ) y  <->  y ( 1st  |`  ( _V  X.  _V ) ) z )
74brres 5402 . . . . . . . . 9  |-  ( y ( 1st  |`  ( _V  X.  _V ) ) z  <->  ( y 1st z  /\  y  e.  ( _V  X.  _V ) ) )
87simprbi 480 . . . . . . . 8  |-  ( y ( 1st  |`  ( _V  X.  _V ) ) z  ->  y  e.  ( _V  X.  _V )
)
96, 8sylbi 207 . . . . . . 7  |-  ( z `' ( 1st  |`  ( _V  X.  _V ) ) y  ->  y  e.  ( _V  X.  _V )
)
109adantl 482 . . . . . 6  |-  ( ( x A z  /\  z `' ( 1st  |`  ( _V  X.  _V ) ) y )  ->  y  e.  ( _V  X.  _V ) )
1110exlimiv 1858 . . . . 5  |-  ( E. z ( x A z  /\  z `' ( 1st  |`  ( _V  X.  _V ) ) y )  ->  y  e.  ( _V  X.  _V ) )
12 vex 3203 . . . . . 6  |-  x  e. 
_V
1312, 5opelco 5293 . . . . 5  |-  ( <.
x ,  y >.  e.  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A
)  <->  E. z ( x A z  /\  z `' ( 1st  |`  ( _V  X.  _V ) ) y ) )
14 opelxp 5146 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( _V  X.  ( _V  X.  _V ) )  <-> 
( x  e.  _V  /\  y  e.  ( _V 
X.  _V ) ) )
1512, 14mpbiran 953 . . . . 5  |-  ( <.
x ,  y >.  e.  ( _V  X.  ( _V  X.  _V ) )  <-> 
y  e.  ( _V 
X.  _V ) )
1611, 13, 153imtr4i 281 . . . 4  |-  ( <.
x ,  y >.  e.  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A
)  ->  <. x ,  y >.  e.  ( _V  X.  ( _V  X.  _V ) ) )
173, 16relssi 5211 . . 3  |-  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  C_  ( _V  X.  ( _V  X.  _V ) )
182, 17sstri 3612 . 2  |-  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B
) )  C_  ( _V  X.  ( _V  X.  _V ) )
191, 18eqsstri 3635 1  |-  ( A 
(x)  B )  C_  ( _V  X.  ( _V  X.  _V ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384   E.wex 1704    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   <.cop 4183   class class class wbr 4653    X. cxp 5112   `'ccnv 5113    |` cres 5116    o. ccom 5118   1stc1st 7166   2ndc2nd 7167    (x) ctxp 31937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-res 5126  df-txp 31961
This theorem is referenced by:  txprel  31986  brtxp2  31988  pprodss4v  31991
  Copyright terms: Public domain W3C validator