Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxp2 Structured version   Visualization version   Unicode version

Theorem brtxp2 31988
Description: The binary relation over a tail cross when the second argument is not an ordered pair. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 3-May-2015.)
Hypothesis
Ref Expression
brtxp2.1  |-  A  e. 
_V
Assertion
Ref Expression
brtxp2  |-  ( A ( R  (x)  S
) B  <->  E. x E. y ( B  = 
<. x ,  y >.  /\  A R x  /\  A S y ) )
Distinct variable groups:    x, A, y    x, B, y    x, R, y    x, S, y

Proof of Theorem brtxp2
StepHypRef Expression
1 txpss3v 31985 . . . . . . 7  |-  ( R 
(x)  S )  C_  ( _V  X.  ( _V  X.  _V ) )
21brel 5168 . . . . . 6  |-  ( A ( R  (x)  S
) B  ->  ( A  e.  _V  /\  B  e.  ( _V  X.  _V ) ) )
32simprd 479 . . . . 5  |-  ( A ( R  (x)  S
) B  ->  B  e.  ( _V  X.  _V ) )
4 elvv 5177 . . . . 5  |-  ( B  e.  ( _V  X.  _V )  <->  E. x E. y  B  =  <. x ,  y >. )
53, 4sylib 208 . . . 4  |-  ( A ( R  (x)  S
) B  ->  E. x E. y  B  =  <. x ,  y >.
)
65pm4.71ri 665 . . 3  |-  ( A ( R  (x)  S
) B  <->  ( E. x E. y  B  = 
<. x ,  y >.  /\  A ( R  (x)  S ) B ) )
7 19.41vv 1915 . . 3  |-  ( E. x E. y ( B  =  <. x ,  y >.  /\  A
( R  (x)  S
) B )  <->  ( E. x E. y  B  = 
<. x ,  y >.  /\  A ( R  (x)  S ) B ) )
86, 7bitr4i 267 . 2  |-  ( A ( R  (x)  S
) B  <->  E. x E. y ( B  = 
<. x ,  y >.  /\  A ( R  (x)  S ) B ) )
9 breq2 4657 . . . 4  |-  ( B  =  <. x ,  y
>.  ->  ( A ( R  (x)  S ) B 
<->  A ( R  (x)  S ) <. x ,  y
>. ) )
109pm5.32i 669 . . 3  |-  ( ( B  =  <. x ,  y >.  /\  A
( R  (x)  S
) B )  <->  ( B  =  <. x ,  y
>.  /\  A ( R 
(x)  S ) <.
x ,  y >.
) )
11102exbii 1775 . 2  |-  ( E. x E. y ( B  =  <. x ,  y >.  /\  A
( R  (x)  S
) B )  <->  E. x E. y ( B  = 
<. x ,  y >.  /\  A ( R  (x)  S ) <. x ,  y
>. ) )
12 brtxp2.1 . . . . . 6  |-  A  e. 
_V
13 vex 3203 . . . . . 6  |-  x  e. 
_V
14 vex 3203 . . . . . 6  |-  y  e. 
_V
1512, 13, 14brtxp 31987 . . . . 5  |-  ( A ( R  (x)  S
) <. x ,  y
>. 
<->  ( A R x  /\  A S y ) )
1615anbi2i 730 . . . 4  |-  ( ( B  =  <. x ,  y >.  /\  A
( R  (x)  S
) <. x ,  y
>. )  <->  ( B  = 
<. x ,  y >.  /\  ( A R x  /\  A S y ) ) )
17 3anass 1042 . . . 4  |-  ( ( B  =  <. x ,  y >.  /\  A R x  /\  A S y )  <->  ( B  =  <. x ,  y
>.  /\  ( A R x  /\  A S y ) ) )
1816, 17bitr4i 267 . . 3  |-  ( ( B  =  <. x ,  y >.  /\  A
( R  (x)  S
) <. x ,  y
>. )  <->  ( B  = 
<. x ,  y >.  /\  A R x  /\  A S y ) )
19182exbii 1775 . 2  |-  ( E. x E. y ( B  =  <. x ,  y >.  /\  A
( R  (x)  S
) <. x ,  y
>. )  <->  E. x E. y
( B  =  <. x ,  y >.  /\  A R x  /\  A S y ) )
208, 11, 193bitri 286 1  |-  ( A ( R  (x)  S
) B  <->  E. x E. y ( B  = 
<. x ,  y >.  /\  A R x  /\  A S y ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200   <.cop 4183   class class class wbr 4653    X. cxp 5112    (x) ctxp 31937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169  df-txp 31961
This theorem is referenced by:  brsuccf  32048  brrestrict  32056
  Copyright terms: Public domain W3C validator