Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pprodss4v Structured version   Visualization version   Unicode version

Theorem pprodss4v 31991
Description: The parallel product is a subclass of  ( ( _V  X.  _V )  X.  ( _V  X.  _V ) ). (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pprodss4v  |- pprod ( A ,  B )  C_  ( ( _V  X.  _V )  X.  ( _V  X.  _V ) )

Proof of Theorem pprodss4v
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pprod 31962 . 2  |- pprod ( A ,  B )  =  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) 
(x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )
2 txprel 31986 . . 3  |-  Rel  (
( A  o.  ( 1st  |`  ( _V  X.  _V ) ) )  (x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )
3 txpss3v 31985 . . . . . . 7  |-  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) )  (x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) 
C_  ( _V  X.  ( _V  X.  _V )
)
43sseli 3599 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) 
(x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )  ->  <. x ,  y >.  e.  ( _V  X.  ( _V  X.  _V ) ) )
5 opelxp2 5151 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( _V  X.  ( _V  X.  _V ) )  ->  y  e.  ( _V  X.  _V )
)
64, 5syl 17 . . . . 5  |-  ( <.
x ,  y >.  e.  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) 
(x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )  ->  y  e.  ( _V  X.  _V )
)
7 elvv 5177 . . . . . 6  |-  ( y  e.  ( _V  X.  _V )  <->  E. z E. w  y  =  <. z ,  w >. )
8 opeq2 4403 . . . . . . . . 9  |-  ( y  =  <. z ,  w >.  ->  <. x ,  y
>.  =  <. x , 
<. z ,  w >. >.
)
98eleq1d 2686 . . . . . . . 8  |-  ( y  =  <. z ,  w >.  ->  ( <. x ,  y >.  e.  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) )  (x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )  <->  <. x ,  <. z ,  w >. >.  e.  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) )  (x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) ) )
10 df-br 4654 . . . . . . . . 9  |-  ( x ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) 
(x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) <. z ,  w >.  <->  <. x ,  <. z ,  w >. >.  e.  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) )  (x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )
11 vex 3203 . . . . . . . . . . 11  |-  x  e. 
_V
12 vex 3203 . . . . . . . . . . 11  |-  z  e. 
_V
13 vex 3203 . . . . . . . . . . 11  |-  w  e. 
_V
1411, 12, 13brtxp 31987 . . . . . . . . . 10  |-  ( x ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) 
(x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) <. z ,  w >.  <-> 
( x ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) z  /\  x
( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) w ) )
1511, 12brco 5292 . . . . . . . . . . . 12  |-  ( x ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) z  <->  E. y ( x ( 1st  |`  ( _V  X.  _V ) ) y  /\  y A z ) )
16 vex 3203 . . . . . . . . . . . . . . . 16  |-  y  e. 
_V
1716brres 5402 . . . . . . . . . . . . . . 15  |-  ( x ( 1st  |`  ( _V  X.  _V ) ) y  <->  ( x 1st y  /\  x  e.  ( _V  X.  _V ) ) )
1817simprbi 480 . . . . . . . . . . . . . 14  |-  ( x ( 1st  |`  ( _V  X.  _V ) ) y  ->  x  e.  ( _V  X.  _V )
)
1918adantr 481 . . . . . . . . . . . . 13  |-  ( ( x ( 1st  |`  ( _V  X.  _V ) ) y  /\  y A z )  ->  x  e.  ( _V  X.  _V ) )
2019exlimiv 1858 . . . . . . . . . . . 12  |-  ( E. y ( x ( 1st  |`  ( _V  X.  _V ) ) y  /\  y A z )  ->  x  e.  ( _V  X.  _V )
)
2115, 20sylbi 207 . . . . . . . . . . 11  |-  ( x ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) z  ->  x  e.  ( _V  X.  _V )
)
2221adantr 481 . . . . . . . . . 10  |-  ( ( x ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) z  /\  x ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) w )  ->  x  e.  ( _V  X.  _V )
)
2314, 22sylbi 207 . . . . . . . . 9  |-  ( x ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) 
(x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) <. z ,  w >.  ->  x  e.  ( _V  X.  _V )
)
2410, 23sylbir 225 . . . . . . . 8  |-  ( <.
x ,  <. z ,  w >. >.  e.  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) )  (x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )  ->  x  e.  ( _V  X.  _V )
)
259, 24syl6bi 243 . . . . . . 7  |-  ( y  =  <. z ,  w >.  ->  ( <. x ,  y >.  e.  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) )  (x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )  ->  x  e.  ( _V  X.  _V )
) )
2625exlimivv 1860 . . . . . 6  |-  ( E. z E. w  y  =  <. z ,  w >.  ->  ( <. x ,  y >.  e.  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) )  (x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )  ->  x  e.  ( _V  X.  _V )
) )
277, 26sylbi 207 . . . . 5  |-  ( y  e.  ( _V  X.  _V )  ->  ( <.
x ,  y >.  e.  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) 
(x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )  ->  x  e.  ( _V  X.  _V )
) )
286, 27mpcom 38 . . . 4  |-  ( <.
x ,  y >.  e.  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) 
(x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )  ->  x  e.  ( _V  X.  _V )
)
29 opelxp 5146 . . . 4  |-  ( <.
x ,  y >.  e.  ( ( _V  X.  _V )  X.  ( _V  X.  _V ) )  <-> 
( x  e.  ( _V  X.  _V )  /\  y  e.  ( _V  X.  _V ) ) )
3028, 6, 29sylanbrc 698 . . 3  |-  ( <.
x ,  y >.  e.  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) 
(x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )  ->  <. x ,  y >.  e.  (
( _V  X.  _V )  X.  ( _V  X.  _V ) ) )
312, 30relssi 5211 . 2  |-  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) )  (x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) 
C_  ( ( _V 
X.  _V )  X.  ( _V  X.  _V ) )
321, 31eqsstri 3635 1  |- pprod ( A ,  B )  C_  ( ( _V  X.  _V )  X.  ( _V  X.  _V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    C_ wss 3574   <.cop 4183   class class class wbr 4653    X. cxp 5112    |` cres 5116    o. ccom 5118   1stc1st 7166   2ndc2nd 7167    (x) ctxp 31937  pprodcpprod 31938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169  df-txp 31961  df-pprod 31962
This theorem is referenced by:  brpprod3a  31993
  Copyright terms: Public domain W3C validator