MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undif3 Structured version   Visualization version   Unicode version

Theorem undif3 3888
Description: An equality involving class union and class difference. The first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 17-Apr-2012.) (Proof shortened by JJ, 13-Jul-2021.)
Assertion
Ref Expression
undif3  |-  ( A  u.  ( B  \  C ) )  =  ( ( A  u.  B )  \  ( C  \  A ) )

Proof of Theorem undif3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elun 3753 . . . 4  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
2 pm4.53 513 . . . . 5  |-  ( -.  ( x  e.  C  /\  -.  x  e.  A
)  <->  ( -.  x  e.  C  \/  x  e.  A ) )
3 eldif 3584 . . . . 5  |-  ( x  e.  ( C  \  A )  <->  ( x  e.  C  /\  -.  x  e.  A ) )
42, 3xchnxbir 323 . . . 4  |-  ( -.  x  e.  ( C 
\  A )  <->  ( -.  x  e.  C  \/  x  e.  A )
)
51, 4anbi12i 733 . . 3  |-  ( ( x  e.  ( A  u.  B )  /\  -.  x  e.  ( C  \  A ) )  <-> 
( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) )
6 eldif 3584 . . 3  |-  ( x  e.  ( ( A  u.  B )  \ 
( C  \  A
) )  <->  ( x  e.  ( A  u.  B
)  /\  -.  x  e.  ( C  \  A
) ) )
7 elun 3753 . . . 4  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( x  e.  A  \/  x  e.  ( B  \  C
) ) )
8 eldif 3584 . . . . 5  |-  ( x  e.  ( B  \  C )  <->  ( x  e.  B  /\  -.  x  e.  C ) )
98orbi2i 541 . . . 4  |-  ( ( x  e.  A  \/  x  e.  ( B  \  C ) )  <->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
10 ordi 908 . . . . 5  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) )  <->  ( (
x  e.  A  \/  x  e.  B )  /\  ( x  e.  A  \/  -.  x  e.  C
) ) )
11 orcom 402 . . . . . 6  |-  ( ( x  e.  A  \/  -.  x  e.  C
)  <->  ( -.  x  e.  C  \/  x  e.  A ) )
1211anbi2i 730 . . . . 5  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( x  e.  A  \/  -.  x  e.  C )
)  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) )
1310, 12bitri 264 . . . 4  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) )  <->  ( (
x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
147, 9, 133bitri 286 . . 3  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) )
155, 6, 143bitr4ri 293 . 2  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  x  e.  (
( A  u.  B
)  \  ( C  \  A ) ) )
1615eqriv 2619 1  |-  ( A  u.  ( B  \  C ) )  =  ( ( A  u.  B )  \  ( C  \  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571    u. cun 3572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579
This theorem is referenced by:  undifabs  4045  llycmpkgen2  21353  hgt750lemb  30734
  Copyright terms: Public domain W3C validator