MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniixp Structured version   Visualization version   Unicode version

Theorem uniixp 7931
Description: The union of an infinite Cartesian product is included in a Cartesian product. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
uniixp  |-  U. X_ x  e.  A  B  C_  ( A  X.  U_ x  e.  A  B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem uniixp
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ixpf 7930 . . . . 5  |-  ( f  e.  X_ x  e.  A  B  ->  f : A --> U_ x  e.  A  B
)
2 fssxp 6060 . . . . 5  |-  ( f : A --> U_ x  e.  A  B  ->  f 
C_  ( A  X.  U_ x  e.  A  B
) )
31, 2syl 17 . . . 4  |-  ( f  e.  X_ x  e.  A  B  ->  f  C_  ( A  X.  U_ x  e.  A  B ) )
4 selpw 4165 . . . 4  |-  ( f  e.  ~P ( A  X.  U_ x  e.  A  B )  <->  f  C_  ( A  X.  U_ x  e.  A  B )
)
53, 4sylibr 224 . . 3  |-  ( f  e.  X_ x  e.  A  B  ->  f  e.  ~P ( A  X.  U_ x  e.  A  B )
)
65ssriv 3607 . 2  |-  X_ x  e.  A  B  C_  ~P ( A  X.  U_ x  e.  A  B )
7 sspwuni 4611 . 2  |-  ( X_ x  e.  A  B  C_ 
~P ( A  X.  U_ x  e.  A  B
)  <->  U. X_ x  e.  A  B  C_  ( A  X.  U_ x  e.  A  B
) )
86, 7mpbi 220 1  |-  U. X_ x  e.  A  B  C_  ( A  X.  U_ x  e.  A  B )
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   U_ciun 4520    X. cxp 5112   -->wf 5884   X_cixp 7908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ixp 7909
This theorem is referenced by:  ixpexg  7932
  Copyright terms: Public domain W3C validator