MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpf Structured version   Visualization version   Unicode version

Theorem ixpf 7930
Description: A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
ixpf  |-  ( F  e.  X_ x  e.  A  B  ->  F : A --> U_ x  e.  A  B
)
Distinct variable groups:    x, A    x, F
Allowed substitution hint:    B( x)

Proof of Theorem ixpf
StepHypRef Expression
1 elixp2 7912 . 2  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
2 ssiun2 4563 . . . . . . 7  |-  ( x  e.  A  ->  B  C_ 
U_ x  e.  A  B )
32sseld 3602 . . . . . 6  |-  ( x  e.  A  ->  (
( F `  x
)  e.  B  -> 
( F `  x
)  e.  U_ x  e.  A  B )
)
43ralimia 2950 . . . . 5  |-  ( A. x  e.  A  ( F `  x )  e.  B  ->  A. x  e.  A  ( F `  x )  e.  U_ x  e.  A  B
)
54anim2i 593 . . . 4  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  -> 
( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  U_ x  e.  A  B ) )
6 nfcv 2764 . . . . 5  |-  F/_ x A
7 nfiu1 4550 . . . . 5  |-  F/_ x U_ x  e.  A  B
8 nfcv 2764 . . . . 5  |-  F/_ x F
96, 7, 8ffnfvf 6389 . . . 4  |-  ( F : A --> U_ x  e.  A  B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  U_ x  e.  A  B
) )
105, 9sylibr 224 . . 3  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  F : A --> U_ x  e.  A  B )
11103adant1 1079 . 2  |-  ( ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  F : A --> U_ x  e.  A  B )
121, 11sylbi 207 1  |-  ( F  e.  X_ x  e.  A  B  ->  F : A --> U_ x  e.  A  B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    e. wcel 1990   A.wral 2912   _Vcvv 3200   U_ciun 4520    Fn wfn 5883   -->wf 5884   ` cfv 5888   X_cixp 7908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ixp 7909
This theorem is referenced by:  uniixp  7931  ixpssmap2g  7937  ioorrnopnlem  40524  iunhoiioolem  40889
  Copyright terms: Public domain W3C validator