| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisngl | Structured version Visualization version Unicode version | ||
| Description: Taking the union of the set of singletons recovers the initial set. (Contributed by Thierry Arnoux, 9-Jan-2020.) |
| Ref | Expression |
|---|---|
| dissnref.c |
|
| Ref | Expression |
|---|---|
| unisngl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dissnref.c |
. . 3
| |
| 2 | 1 | unieqi 4445 |
. 2
|
| 3 | simpl 473 |
. . . . . . . . 9
| |
| 4 | simpr 477 |
. . . . . . . . 9
| |
| 5 | 3, 4 | eleqtrd 2703 |
. . . . . . . 8
|
| 6 | 5 | exlimiv 1858 |
. . . . . . 7
|
| 7 | eqid 2622 |
. . . . . . . 8
| |
| 8 | snex 4908 |
. . . . . . . . 9
| |
| 9 | eleq2 2690 |
. . . . . . . . . 10
| |
| 10 | eqeq1 2626 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | anbi12d 747 |
. . . . . . . . 9
|
| 12 | 8, 11 | spcev 3300 |
. . . . . . . 8
|
| 13 | 7, 12 | mpan2 707 |
. . . . . . 7
|
| 14 | 6, 13 | impbii 199 |
. . . . . 6
|
| 15 | velsn 4193 |
. . . . . 6
| |
| 16 | equcom 1945 |
. . . . . 6
| |
| 17 | 14, 15, 16 | 3bitri 286 |
. . . . 5
|
| 18 | 17 | rexbii 3041 |
. . . 4
|
| 19 | r19.42v 3092 |
. . . . . 6
| |
| 20 | 19 | exbii 1774 |
. . . . 5
|
| 21 | rexcom4 3225 |
. . . . 5
| |
| 22 | eluniab 4447 |
. . . . 5
| |
| 23 | 20, 21, 22 | 3bitr4ri 293 |
. . . 4
|
| 24 | risset 3062 |
. . . 4
| |
| 25 | 18, 23, 24 | 3bitr4i 292 |
. . 3
|
| 26 | 25 | eqriv 2619 |
. 2
|
| 27 | 2, 26 | eqtr2i 2645 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 df-uni 4437 |
| This theorem is referenced by: dissnref 21331 dissnlocfin 21332 |
| Copyright terms: Public domain | W3C validator |