MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dissnlocfin Structured version   Visualization version   Unicode version

Theorem dissnlocfin 21332
Description: The set of singletons is locally finite in the discrete topology. (Contributed by Thierry Arnoux, 9-Jan-2020.)
Hypothesis
Ref Expression
dissnref.c  |-  C  =  { u  |  E. x  e.  X  u  =  { x } }
Assertion
Ref Expression
dissnlocfin  |-  ( X  e.  V  ->  C  e.  ( LocFin `  ~P X ) )
Distinct variable groups:    u, C, x    u, V, x    u, X, x

Proof of Theorem dissnlocfin
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 20799 . 2  |-  ( X  e.  V  ->  ~P X  e.  Top )
2 eqidd 2623 . 2  |-  ( X  e.  V  ->  X  =  X )
3 snelpwi 4912 . . . . 5  |-  ( z  e.  X  ->  { z }  e.  ~P X
)
43adantl 482 . . . 4  |-  ( ( X  e.  V  /\  z  e.  X )  ->  { z }  e.  ~P X )
5 vsnid 4209 . . . . 5  |-  z  e. 
{ z }
65a1i 11 . . . 4  |-  ( ( X  e.  V  /\  z  e.  X )  ->  z  e.  { z } )
7 nfv 1843 . . . . . 6  |-  F/ u
( X  e.  V  /\  z  e.  X
)
8 nfrab1 3122 . . . . . 6  |-  F/_ u { u  e.  C  |  ( u  i^i 
{ z } )  =/=  (/) }
9 nfcv 2764 . . . . . 6  |-  F/_ u { { z } }
10 dissnref.c . . . . . . . . . 10  |-  C  =  { u  |  E. x  e.  X  u  =  { x } }
1110abeq2i 2735 . . . . . . . . 9  |-  ( u  e.  C  <->  E. x  e.  X  u  =  { x } )
1211anbi1i 731 . . . . . . . 8  |-  ( ( u  e.  C  /\  ( u  i^i  { z } )  =/=  (/) )  <->  ( E. x  e.  X  u  =  { x }  /\  ( u  i^i  { z } )  =/=  (/) ) )
13 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ( X  e.  V  /\  z  e.  X )  /\  (
u  i^i  { z } )  =/=  (/) )  /\  x  e.  X )  /\  u  =  {
x } )  ->  u  =  { x } )
14 simplr 792 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( X  e.  V  /\  z  e.  X )  /\  ( u  i^i  {
z } )  =/=  (/) )  /\  x  e.  X )  /\  u  =  { x } )  /\  x  =/=  z
)  ->  u  =  { x } )
1514ineq1d 3813 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( X  e.  V  /\  z  e.  X )  /\  ( u  i^i  {
z } )  =/=  (/) )  /\  x  e.  X )  /\  u  =  { x } )  /\  x  =/=  z
)  ->  ( u  i^i  { z } )  =  ( { x }  i^i  { z } ) )
16 disjsn2 4247 . . . . . . . . . . . . . . . . . 18  |-  ( x  =/=  z  ->  ( { x }  i^i  { z } )  =  (/) )
1716adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( X  e.  V  /\  z  e.  X )  /\  ( u  i^i  {
z } )  =/=  (/) )  /\  x  e.  X )  /\  u  =  { x } )  /\  x  =/=  z
)  ->  ( {
x }  i^i  {
z } )  =  (/) )
1815, 17eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( X  e.  V  /\  z  e.  X )  /\  ( u  i^i  {
z } )  =/=  (/) )  /\  x  e.  X )  /\  u  =  { x } )  /\  x  =/=  z
)  ->  ( u  i^i  { z } )  =  (/) )
19 simp-4r 807 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( X  e.  V  /\  z  e.  X )  /\  ( u  i^i  {
z } )  =/=  (/) )  /\  x  e.  X )  /\  u  =  { x } )  /\  x  =/=  z
)  ->  ( u  i^i  { z } )  =/=  (/) )
2019neneqd 2799 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( X  e.  V  /\  z  e.  X )  /\  ( u  i^i  {
z } )  =/=  (/) )  /\  x  e.  X )  /\  u  =  { x } )  /\  x  =/=  z
)  ->  -.  (
u  i^i  { z } )  =  (/) )
2118, 20pm2.65da 600 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( X  e.  V  /\  z  e.  X )  /\  (
u  i^i  { z } )  =/=  (/) )  /\  x  e.  X )  /\  u  =  {
x } )  ->  -.  x  =/=  z
)
22 nne 2798 . . . . . . . . . . . . . . 15  |-  ( -.  x  =/=  z  <->  x  =  z )
2321, 22sylib 208 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( X  e.  V  /\  z  e.  X )  /\  (
u  i^i  { z } )  =/=  (/) )  /\  x  e.  X )  /\  u  =  {
x } )  ->  x  =  z )
2423sneqd 4189 . . . . . . . . . . . . 13  |-  ( ( ( ( ( X  e.  V  /\  z  e.  X )  /\  (
u  i^i  { z } )  =/=  (/) )  /\  x  e.  X )  /\  u  =  {
x } )  ->  { x }  =  { z } )
2513, 24eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( ( ( X  e.  V  /\  z  e.  X )  /\  (
u  i^i  { z } )  =/=  (/) )  /\  x  e.  X )  /\  u  =  {
x } )  ->  u  =  { z } )
2625r19.29an 3077 . . . . . . . . . . 11  |-  ( ( ( ( X  e.  V  /\  z  e.  X )  /\  (
u  i^i  { z } )  =/=  (/) )  /\  E. x  e.  X  u  =  { x }
)  ->  u  =  { z } )
2726an32s 846 . . . . . . . . . 10  |-  ( ( ( ( X  e.  V  /\  z  e.  X )  /\  E. x  e.  X  u  =  { x } )  /\  ( u  i^i 
{ z } )  =/=  (/) )  ->  u  =  { z } )
2827anasss 679 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  z  e.  X
)  /\  ( E. x  e.  X  u  =  { x }  /\  ( u  i^i  { z } )  =/=  (/) ) )  ->  u  =  {
z } )
29 sneq 4187 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  { x }  =  { z } )
3029eqeq2d 2632 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
u  =  { x } 
<->  u  =  { z } ) )
3130rspcev 3309 . . . . . . . . . . 11  |-  ( ( z  e.  X  /\  u  =  { z } )  ->  E. x  e.  X  u  =  { x } )
3231adantll 750 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  z  e.  X
)  /\  u  =  { z } )  ->  E. x  e.  X  u  =  { x } )
33 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  V  /\  z  e.  X
)  /\  u  =  { z } )  ->  u  =  {
z } )
3433ineq1d 3813 . . . . . . . . . . . 12  |-  ( ( ( X  e.  V  /\  z  e.  X
)  /\  u  =  { z } )  ->  ( u  i^i 
{ z } )  =  ( { z }  i^i  { z } ) )
35 inidm 3822 . . . . . . . . . . . 12  |-  ( { z }  i^i  {
z } )  =  { z }
3634, 35syl6eq 2672 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  z  e.  X
)  /\  u  =  { z } )  ->  ( u  i^i 
{ z } )  =  { z } )
37 vex 3203 . . . . . . . . . . . . 13  |-  z  e. 
_V
3837snnz 4309 . . . . . . . . . . . 12  |-  { z }  =/=  (/)
3938a1i 11 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  z  e.  X
)  /\  u  =  { z } )  ->  { z }  =/=  (/) )
4036, 39eqnetrd 2861 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  z  e.  X
)  /\  u  =  { z } )  ->  ( u  i^i 
{ z } )  =/=  (/) )
4132, 40jca 554 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  z  e.  X
)  /\  u  =  { z } )  ->  ( E. x  e.  X  u  =  { x }  /\  ( u  i^i  { z } )  =/=  (/) ) )
4228, 41impbida 877 . . . . . . . 8  |-  ( ( X  e.  V  /\  z  e.  X )  ->  ( ( E. x  e.  X  u  =  { x }  /\  ( u  i^i  { z } )  =/=  (/) )  <->  u  =  { z } ) )
4312, 42syl5bb 272 . . . . . . 7  |-  ( ( X  e.  V  /\  z  e.  X )  ->  ( ( u  e.  C  /\  ( u  i^i  { z } )  =/=  (/) )  <->  u  =  { z } ) )
44 rabid 3116 . . . . . . 7  |-  ( u  e.  { u  e.  C  |  ( u  i^i  { z } )  =/=  (/) }  <->  ( u  e.  C  /\  (
u  i^i  { z } )  =/=  (/) ) )
45 velsn 4193 . . . . . . 7  |-  ( u  e.  { { z } }  <->  u  =  { z } )
4643, 44, 453bitr4g 303 . . . . . 6  |-  ( ( X  e.  V  /\  z  e.  X )  ->  ( u  e.  {
u  e.  C  | 
( u  i^i  {
z } )  =/=  (/) }  <->  u  e.  { {
z } } ) )
477, 8, 9, 46eqrd 3622 . . . . 5  |-  ( ( X  e.  V  /\  z  e.  X )  ->  { u  e.  C  |  ( u  i^i 
{ z } )  =/=  (/) }  =  { { z } }
)
48 snfi 8038 . . . . 5  |-  { {
z } }  e.  Fin
4947, 48syl6eqel 2709 . . . 4  |-  ( ( X  e.  V  /\  z  e.  X )  ->  { u  e.  C  |  ( u  i^i 
{ z } )  =/=  (/) }  e.  Fin )
50 eleq2 2690 . . . . . 6  |-  ( y  =  { z }  ->  ( z  e.  y  <->  z  e.  {
z } ) )
51 ineq2 3808 . . . . . . . . 9  |-  ( y  =  { z }  ->  ( u  i^i  y )  =  ( u  i^i  { z } ) )
5251neeq1d 2853 . . . . . . . 8  |-  ( y  =  { z }  ->  ( ( u  i^i  y )  =/=  (/) 
<->  ( u  i^i  {
z } )  =/=  (/) ) )
5352rabbidv 3189 . . . . . . 7  |-  ( y  =  { z }  ->  { u  e.  C  |  ( u  i^i  y )  =/=  (/) }  =  { u  e.  C  |  (
u  i^i  { z } )  =/=  (/) } )
5453eleq1d 2686 . . . . . 6  |-  ( y  =  { z }  ->  ( { u  e.  C  |  (
u  i^i  y )  =/=  (/) }  e.  Fin  <->  {
u  e.  C  | 
( u  i^i  {
z } )  =/=  (/) }  e.  Fin )
)
5550, 54anbi12d 747 . . . . 5  |-  ( y  =  { z }  ->  ( ( z  e.  y  /\  {
u  e.  C  | 
( u  i^i  y
)  =/=  (/) }  e.  Fin )  <->  ( z  e. 
{ z }  /\  { u  e.  C  | 
( u  i^i  {
z } )  =/=  (/) }  e.  Fin )
) )
5655rspcev 3309 . . . 4  |-  ( ( { z }  e.  ~P X  /\  (
z  e.  { z }  /\  { u  e.  C  |  (
u  i^i  { z } )  =/=  (/) }  e.  Fin ) )  ->  E. y  e.  ~P  X ( z  e.  y  /\  {
u  e.  C  | 
( u  i^i  y
)  =/=  (/) }  e.  Fin ) )
574, 6, 49, 56syl12anc 1324 . . 3  |-  ( ( X  e.  V  /\  z  e.  X )  ->  E. y  e.  ~P  X ( z  e.  y  /\  { u  e.  C  |  (
u  i^i  y )  =/=  (/) }  e.  Fin ) )
5857ralrimiva 2966 . 2  |-  ( X  e.  V  ->  A. z  e.  X  E. y  e.  ~P  X ( z  e.  y  /\  {
u  e.  C  | 
( u  i^i  y
)  =/=  (/) }  e.  Fin ) )
59 unipw 4918 . . . 4  |-  U. ~P X  =  X
6059eqcomi 2631 . . 3  |-  X  = 
U. ~P X
6110unisngl 21330 . . 3  |-  X  = 
U. C
6260, 61islocfin 21320 . 2  |-  ( C  e.  ( LocFin `  ~P X )  <->  ( ~P X  e.  Top  /\  X  =  X  /\  A. z  e.  X  E. y  e.  ~P  X ( z  e.  y  /\  {
u  e.  C  | 
( u  i^i  y
)  =/=  (/) }  e.  Fin ) ) )
631, 2, 58, 62syl3anbrc 1246 1  |-  ( X  e.  V  ->  C  e.  ( LocFin `  ~P X ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    i^i cin 3573   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436   ` cfv 5888   Fincfn 7955   Topctop 20698   LocFinclocfin 21307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-en 7956  df-fin 7959  df-top 20699  df-locfin 21310
This theorem is referenced by:  dispcmp  29926
  Copyright terms: Public domain W3C validator