| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unopab | Structured version Visualization version Unicode version | ||
| Description: Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| unopab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unab 3894 |
. . 3
| |
| 2 | 19.43 1810 |
. . . . 5
| |
| 3 | andi 911 |
. . . . . . . 8
| |
| 4 | 3 | exbii 1774 |
. . . . . . 7
|
| 5 | 19.43 1810 |
. . . . . . 7
| |
| 6 | 4, 5 | bitr2i 265 |
. . . . . 6
|
| 7 | 6 | exbii 1774 |
. . . . 5
|
| 8 | 2, 7 | bitr3i 266 |
. . . 4
|
| 9 | 8 | abbii 2739 |
. . 3
|
| 10 | 1, 9 | eqtri 2644 |
. 2
|
| 11 | df-opab 4713 |
. . 3
| |
| 12 | df-opab 4713 |
. . 3
| |
| 13 | 11, 12 | uneq12i 3765 |
. 2
|
| 14 | df-opab 4713 |
. 2
| |
| 15 | 10, 13, 14 | 3eqtr4i 2654 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-opab 4713 |
| This theorem is referenced by: xpundi 5171 xpundir 5172 cnvun 5538 coundi 5636 coundir 5637 mptun 6025 opsrtoslem1 19484 lgsquadlem3 25107 |
| Copyright terms: Public domain | W3C validator |