| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpundi | Structured version Visualization version Unicode version | ||
| Description: Distributive law for Cartesian product over union. Theorem 103 of [Suppes] p. 52. (Contributed by NM, 12-Aug-2004.) |
| Ref | Expression |
|---|---|
| xpundi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 5120 |
. 2
| |
| 2 | df-xp 5120 |
. . . 4
| |
| 3 | df-xp 5120 |
. . . 4
| |
| 4 | 2, 3 | uneq12i 3765 |
. . 3
|
| 5 | elun 3753 |
. . . . . . 7
| |
| 6 | 5 | anbi2i 730 |
. . . . . 6
|
| 7 | andi 911 |
. . . . . 6
| |
| 8 | 6, 7 | bitri 264 |
. . . . 5
|
| 9 | 8 | opabbii 4717 |
. . . 4
|
| 10 | unopab 4728 |
. . . 4
| |
| 11 | 9, 10 | eqtr4i 2647 |
. . 3
|
| 12 | 4, 11 | eqtr4i 2647 |
. 2
|
| 13 | 1, 12 | eqtr4i 2647 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-opab 4713 df-xp 5120 |
| This theorem is referenced by: xpun 5176 xp2cda 9002 xpcdaen 9005 alephadd 9399 ustund 22025 bj-2upln1upl 33012 |
| Copyright terms: Public domain | W3C validator |