MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpundi Structured version   Visualization version   Unicode version

Theorem xpundi 5171
Description: Distributive law for Cartesian product over union. Theorem 103 of [Suppes] p. 52. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
xpundi  |-  ( A  X.  ( B  u.  C ) )  =  ( ( A  X.  B )  u.  ( A  X.  C ) )

Proof of Theorem xpundi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5120 . 2  |-  ( A  X.  ( B  u.  C ) )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( B  u.  C
) ) }
2 df-xp 5120 . . . 4  |-  ( A  X.  B )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  B ) }
3 df-xp 5120 . . . 4  |-  ( A  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  C ) }
42, 3uneq12i 3765 . . 3  |-  ( ( A  X.  B )  u.  ( A  X.  C ) )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  u.  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) } )
5 elun 3753 . . . . . . 7  |-  ( y  e.  ( B  u.  C )  <->  ( y  e.  B  \/  y  e.  C ) )
65anbi2i 730 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  ( B  u.  C ) )  <->  ( x  e.  A  /\  (
y  e.  B  \/  y  e.  C )
) )
7 andi 911 . . . . . 6  |-  ( ( x  e.  A  /\  ( y  e.  B  \/  y  e.  C
) )  <->  ( (
x  e.  A  /\  y  e.  B )  \/  ( x  e.  A  /\  y  e.  C
) ) )
86, 7bitri 264 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  ( B  u.  C ) )  <->  ( (
x  e.  A  /\  y  e.  B )  \/  ( x  e.  A  /\  y  e.  C
) ) )
98opabbii 4717 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( B  u.  C ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  \/  ( x  e.  A  /\  y  e.  C ) ) }
10 unopab 4728 . . . 4  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  u.  {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  \/  ( x  e.  A  /\  y  e.  C ) ) }
119, 10eqtr4i 2647 . . 3  |-  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( B  u.  C ) ) }  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  u.  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) } )
124, 11eqtr4i 2647 . 2  |-  ( ( A  X.  B )  u.  ( A  X.  C ) )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( B  u.  C
) ) }
131, 12eqtr4i 2647 1  |-  ( A  X.  ( B  u.  C ) )  =  ( ( A  X.  B )  u.  ( A  X.  C ) )
Colors of variables: wff setvar class
Syntax hints:    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    u. cun 3572   {copab 4712    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-opab 4713  df-xp 5120
This theorem is referenced by:  xpun  5176  xp2cda  9002  xpcdaen  9005  alephadd  9399  ustund  22025  bj-2upln1upl  33012
  Copyright terms: Public domain W3C validator