MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpundir Structured version   Visualization version   Unicode version

Theorem xpundir 5172
Description: Distributive law for Cartesian product over union. Similar to Theorem 103 of [Suppes] p. 52. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
xpundir  |-  ( ( A  u.  B )  X.  C )  =  ( ( A  X.  C )  u.  ( B  X.  C ) )

Proof of Theorem xpundir
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5120 . 2  |-  ( ( A  u.  B )  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  ( A  u.  B
)  /\  y  e.  C ) }
2 df-xp 5120 . . . 4  |-  ( A  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  C ) }
3 df-xp 5120 . . . 4  |-  ( B  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  C ) }
42, 3uneq12i 3765 . . 3  |-  ( ( A  X.  C )  u.  ( B  X.  C ) )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) }  u.  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } )
5 elun 3753 . . . . . . 7  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
65anbi1i 731 . . . . . 6  |-  ( ( x  e.  ( A  u.  B )  /\  y  e.  C )  <->  ( ( x  e.  A  \/  x  e.  B
)  /\  y  e.  C ) )
7 andir 912 . . . . . 6  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  y  e.  C )  <->  ( (
x  e.  A  /\  y  e.  C )  \/  ( x  e.  B  /\  y  e.  C
) ) )
86, 7bitri 264 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  y  e.  C )  <->  ( ( x  e.  A  /\  y  e.  C
)  \/  ( x  e.  B  /\  y  e.  C ) ) )
98opabbii 4717 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  e.  C ) }  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  C
)  \/  ( x  e.  B  /\  y  e.  C ) ) }
10 unopab 4728 . . . 4  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  C
)  \/  ( x  e.  B  /\  y  e.  C ) ) }
119, 10eqtr4i 2647 . . 3  |-  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  e.  C ) }  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } )
124, 11eqtr4i 2647 . 2  |-  ( ( A  X.  C )  u.  ( B  X.  C ) )  =  { <. x ,  y
>.  |  ( x  e.  ( A  u.  B
)  /\  y  e.  C ) }
131, 12eqtr4i 2647 1  |-  ( ( A  u.  B )  X.  C )  =  ( ( A  X.  C )  u.  ( B  X.  C ) )
Colors of variables: wff setvar class
Syntax hints:    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    u. cun 3572   {copab 4712    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-opab 4713  df-xp 5120
This theorem is referenced by:  xpun  5176  resundi  5410  xpfi  8231  cdaassen  9004  hashxplem  13220  ustund  22025  cnmpt2pc  22727  poimirlem3  33412  poimirlem4  33413  poimirlem6  33415  poimirlem7  33416  poimirlem16  33425  poimirlem19  33428  pwssplit4  37659  xpprsng  42110
  Copyright terms: Public domain W3C validator