| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coundi | Structured version Visualization version Unicode version | ||
| Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| coundi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unopab 4728 |
. . 3
| |
| 2 | brun 4703 |
. . . . . . . 8
| |
| 3 | 2 | anbi1i 731 |
. . . . . . 7
|
| 4 | andir 912 |
. . . . . . 7
| |
| 5 | 3, 4 | bitri 264 |
. . . . . 6
|
| 6 | 5 | exbii 1774 |
. . . . 5
|
| 7 | 19.43 1810 |
. . . . 5
| |
| 8 | 6, 7 | bitr2i 265 |
. . . 4
|
| 9 | 8 | opabbii 4717 |
. . 3
|
| 10 | 1, 9 | eqtri 2644 |
. 2
|
| 11 | df-co 5123 |
. . 3
| |
| 12 | df-co 5123 |
. . 3
| |
| 13 | 11, 12 | uneq12i 3765 |
. 2
|
| 14 | df-co 5123 |
. 2
| |
| 15 | 10, 13, 14 | 3eqtr4ri 2655 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-br 4654 df-opab 4713 df-co 5123 |
| This theorem is referenced by: mvdco 17865 ustssco 22018 cvmliftlem10 31276 poimirlem9 33418 diophren 37377 rtrclex 37924 trclubgNEW 37925 trclexi 37927 rtrclexi 37928 cnvtrcl0 37933 trrelsuperrel2dg 37963 cotrclrcl 38034 frege131d 38056 |
| Copyright terms: Public domain | W3C validator |