MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrloopvtxel Structured version   Visualization version   Unicode version

Theorem uspgrloopvtxel 26412
Description: A vertex in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 26141). (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
uspgrloopvtx.g  |-  G  = 
<. V ,  { <. A ,  { N } >. } >.
Assertion
Ref Expression
uspgrloopvtxel  |-  ( ( V  e.  W  /\  N  e.  V )  ->  N  e.  (Vtx `  G ) )

Proof of Theorem uspgrloopvtxel
StepHypRef Expression
1 uspgrloopvtx.g . . 3  |-  G  = 
<. V ,  { <. A ,  { N } >. } >.
21uspgrloopvtx 26411 . 2  |-  ( V  e.  W  ->  (Vtx `  G )  =  V )
3 eleq2 2690 . . . . 5  |-  ( V  =  (Vtx `  G
)  ->  ( N  e.  V  <->  N  e.  (Vtx `  G ) ) )
43biimpd 219 . . . 4  |-  ( V  =  (Vtx `  G
)  ->  ( N  e.  V  ->  N  e.  (Vtx `  G )
) )
54eqcoms 2630 . . 3  |-  ( (Vtx
`  G )  =  V  ->  ( N  e.  V  ->  N  e.  (Vtx `  G )
) )
65com12 32 . 2  |-  ( N  e.  V  ->  (
(Vtx `  G )  =  V  ->  N  e.  (Vtx `  G )
) )
72, 6mpan9 486 1  |-  ( ( V  e.  W  /\  N  e.  V )  ->  N  e.  (Vtx `  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {csn 4177   <.cop 4183   ` cfv 5888  Vtxcvtx 25874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-vtx 25876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator