| Step | Hyp | Ref
| Expression |
| 1 | | simp2 1062 |
. . . . 5
  UnifSp

  |
| 2 | | neipcfilu.x |
. . . . . 6
     |
| 3 | | neipcfilu.j |
. . . . . 6
     |
| 4 | 2, 3 | istps 20738 |
. . . . 5
 TopOn    |
| 5 | 1, 4 | sylib 208 |
. . . 4
  UnifSp

TopOn    |
| 6 | | simp3 1063 |
. . . . 5
  UnifSp

  |
| 7 | 6 | snssd 4340 |
. . . 4
  UnifSp

    |
| 8 | | snnzg 4308 |
. . . . 5
     |
| 9 | 6, 8 | syl 17 |
. . . 4
  UnifSp

    |
| 10 | | neifil 21684 |
. . . 4
  TopOn   
                   |
| 11 | 5, 7, 9, 10 | syl3anc 1326 |
. . 3
  UnifSp

                |
| 12 | | filfbas 21652 |
. . 3
                               |
| 13 | 11, 12 | syl 17 |
. 2
  UnifSp

                |
| 14 | | eqid 2622 |
. . . . . . . . . 10
             |
| 15 | | imaeq1 5461 |
. . . . . . . . . . . 12
               |
| 16 | 15 | eqeq2d 2632 |
. . . . . . . . . . 11
             
               |
| 17 | 16 | rspcev 3309 |
. . . . . . . . . 10
               
              |
| 18 | 14, 17 | mpan2 707 |
. . . . . . . . 9
 
              |
| 19 | | vex 3203 |
. . . . . . . . . . 11
 |
| 20 | 19 | imaex 7104 |
. . . . . . . . . 10
       |
| 21 | | eqid 2622 |
. . . . . . . . . . 11
                 |
| 22 | 21 | elrnmpt 5372 |
. . . . . . . . . 10
                      
               |
| 23 | 20, 22 | ax-mp 5 |
. . . . . . . . 9
              

              |
| 24 | 18, 23 | sylibr 224 |
. . . . . . . 8
                 |
| 25 | 24 | ad2antlr 763 |
. . . . . . 7
     UnifSp  
                                |
| 26 | | neipcfilu.u |
. . . . . . . . . . . . 13
UnifSt   |
| 27 | 2, 26, 3 | isusp 22065 |
. . . . . . . . . . . 12
 UnifSp  UnifOn  unifTop     |
| 28 | 27 | simplbi 476 |
. . . . . . . . . . 11
 UnifSp UnifOn    |
| 29 | 28 | 3ad2ant1 1082 |
. . . . . . . . . 10
  UnifSp

UnifOn    |
| 30 | | eqid 2622 |
. . . . . . . . . . 11
unifTop  unifTop   |
| 31 | 30 | utopsnneip 22052 |
. . . . . . . . . 10
  UnifOn       unifTop                  |
| 32 | 29, 6, 31 | syl2anc 693 |
. . . . . . . . 9
  UnifSp

    unifTop                  |
| 33 | 32 | eleq2d 2687 |
. . . . . . . 8
  UnifSp

           unifTop       
                 |
| 34 | 33 | ad3antrrr 766 |
. . . . . . 7
     UnifSp  
                           unifTop       
                 |
| 35 | 25, 34 | mpbird 247 |
. . . . . 6
     UnifSp  
                          unifTop          |
| 36 | | simpl1 1064 |
. . . . . . . . . 10
   UnifSp
 
               
UnifSp |
| 37 | 36 | 3anassrs 1290 |
. . . . . . . . 9
     UnifSp  
                UnifSp |
| 38 | 27 | simprbi 480 |
. . . . . . . . 9
 UnifSp unifTop    |
| 39 | 37, 38 | syl 17 |
. . . . . . . 8
     UnifSp  
                unifTop    |
| 40 | 39 | fveq2d 6195 |
. . . . . . 7
     UnifSp  
                       unifTop     |
| 41 | 40 | fveq1d 6193 |
. . . . . 6
     UnifSp  
                              unifTop          |
| 42 | 35, 41 | eleqtrrd 2704 |
. . . . 5
     UnifSp  
                                  |
| 43 | | simpr 477 |
. . . . 5
     UnifSp  
                                |
| 44 | | id 22 |
. . . . . . . 8
               |
| 45 | 44 | sqxpeqd 5141 |
. . . . . . 7
                         |
| 46 | 45 | sseq1d 3632 |
. . . . . 6
                           |
| 47 | 46 | rspcev 3309 |
. . . . 5
                                                 |
| 48 | 42, 43, 47 | syl2anc 693 |
. . . 4
     UnifSp  
                                |
| 49 | 29 | adantr 481 |
. . . . 5
   UnifSp
  UnifOn    |
| 50 | 6 | adantr 481 |
. . . . 5
   UnifSp
    |
| 51 | | simpr 477 |
. . . . 5
   UnifSp
    |
| 52 | | simpll1 1100 |
. . . . . . . 8
    UnifOn 

   
UnifOn    |
| 53 | | simplr 792 |
. . . . . . . 8
    UnifOn 

   
  |
| 54 | | ustexsym 22019 |
. . . . . . . 8
  UnifOn   
 
   |
| 55 | 52, 53, 54 | syl2anc 693 |
. . . . . . 7
    UnifOn 

    
 
   |
| 56 | 52 | ad2antrr 762 |
. . . . . . . . . . . 12
      UnifOn 
    
    
UnifOn    |
| 57 | | simplr 792 |
. . . . . . . . . . . 12
      UnifOn 
    
    
  |
| 58 | | ustssxp 22008 |
. . . . . . . . . . . 12
  UnifOn       |
| 59 | 56, 57, 58 | syl2anc 693 |
. . . . . . . . . . 11
      UnifOn 
    
         |
| 60 | | simpll2 1101 |
. . . . . . . . . . . 12
    UnifOn 

   
 
     |
| 61 | 60 | 3anassrs 1290 |
. . . . . . . . . . 11
      UnifOn 
    
    
  |
| 62 | | ustneism 22027 |
. . . . . . . . . . 11
 
                 
    |
| 63 | 59, 61, 62 | syl2anc 693 |
. . . . . . . . . 10
      UnifOn 
    
                   
    |
| 64 | | simprl 794 |
. . . . . . . . . . . 12
      UnifOn 
    
     
  |
| 65 | 64 | coeq2d 5284 |
. . . . . . . . . . 11
      UnifOn 
    
            |
| 66 | | coss1 5277 |
. . . . . . . . . . . . . 14
       |
| 67 | | coss2 5278 |
. . . . . . . . . . . . . 14
       |
| 68 | 66, 67 | sstrd 3613 |
. . . . . . . . . . . . 13
       |
| 69 | 68 | ad2antll 765 |
. . . . . . . . . . . 12
      UnifOn 
    
      
    |
| 70 | | simpllr 799 |
. . . . . . . . . . . 12
      UnifOn 
    
      
  |
| 71 | 69, 70 | sstrd 3613 |
. . . . . . . . . . 11
      UnifOn 
    
      
  |
| 72 | 65, 71 | eqsstrd 3639 |
. . . . . . . . . 10
      UnifOn 
    
          |
| 73 | 63, 72 | sstrd 3613 |
. . . . . . . . 9
      UnifOn 
    
                     |
| 74 | 73 | ex 450 |
. . . . . . . 8
     UnifOn 

   
   
                  |
| 75 | 74 | reximdva 3017 |
. . . . . . 7
    UnifOn 

       
 
                 |
| 76 | 55, 75 | mpd 15 |
. . . . . 6
    UnifOn 

    
                |
| 77 | | ustexhalf 22014 |
. . . . . . 7
  UnifOn   
    |
| 78 | 77 | 3adant2 1080 |
. . . . . 6
  UnifOn 
 
    |
| 79 | 76, 78 | r19.29a 3078 |
. . . . 5
  UnifOn 
 
                |
| 80 | 49, 50, 51, 79 | syl3anc 1326 |
. . . 4
   UnifSp
  
                |
| 81 | 48, 80 | r19.29a 3078 |
. . 3
   UnifSp
                  |
| 82 | 81 | ralrimiva 2966 |
. 2
  UnifSp


                |
| 83 | | iscfilu 22092 |
. . 3
 UnifOn 
           CauFilu 
                
                 |
| 84 | 29, 83 | syl 17 |
. 2
  UnifSp

           CauFilu 
                
                 |
| 85 | 13, 82, 84 | mpbir2and 957 |
1
  UnifSp

          CauFilu    |