MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neipcfilu Structured version   Visualization version   Unicode version

Theorem neipcfilu 22100
Description: In an uniform space, a neighboring filter is a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018.)
Hypotheses
Ref Expression
neipcfilu.x  |-  X  =  ( Base `  W
)
neipcfilu.j  |-  J  =  ( TopOpen `  W )
neipcfilu.u  |-  U  =  (UnifSt `  W )
Assertion
Ref Expression
neipcfilu  |-  ( ( W  e. UnifSp  /\  W  e. 
TopSp  /\  P  e.  X
)  ->  ( ( nei `  J ) `  { P } )  e.  (CauFilu `  U ) )

Proof of Theorem neipcfilu
Dummy variables  v 
a  w  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1062 . . . . 5  |-  ( ( W  e. UnifSp  /\  W  e. 
TopSp  /\  P  e.  X
)  ->  W  e.  TopSp
)
2 neipcfilu.x . . . . . 6  |-  X  =  ( Base `  W
)
3 neipcfilu.j . . . . . 6  |-  J  =  ( TopOpen `  W )
42, 3istps 20738 . . . . 5  |-  ( W  e.  TopSp 
<->  J  e.  (TopOn `  X ) )
51, 4sylib 208 . . . 4  |-  ( ( W  e. UnifSp  /\  W  e. 
TopSp  /\  P  e.  X
)  ->  J  e.  (TopOn `  X ) )
6 simp3 1063 . . . . 5  |-  ( ( W  e. UnifSp  /\  W  e. 
TopSp  /\  P  e.  X
)  ->  P  e.  X )
76snssd 4340 . . . 4  |-  ( ( W  e. UnifSp  /\  W  e. 
TopSp  /\  P  e.  X
)  ->  { P }  C_  X )
8 snnzg 4308 . . . . 5  |-  ( P  e.  X  ->  { P }  =/=  (/) )
96, 8syl 17 . . . 4  |-  ( ( W  e. UnifSp  /\  W  e. 
TopSp  /\  P  e.  X
)  ->  { P }  =/=  (/) )
10 neifil 21684 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  { P }  C_  X  /\  { P }  =/=  (/) )  -> 
( ( nei `  J
) `  { P } )  e.  ( Fil `  X ) )
115, 7, 9, 10syl3anc 1326 . . 3  |-  ( ( W  e. UnifSp  /\  W  e. 
TopSp  /\  P  e.  X
)  ->  ( ( nei `  J ) `  { P } )  e.  ( Fil `  X
) )
12 filfbas 21652 . . 3  |-  ( ( ( nei `  J
) `  { P } )  e.  ( Fil `  X )  ->  ( ( nei `  J ) `  { P } )  e.  (
fBas `  X )
)
1311, 12syl 17 . 2  |-  ( ( W  e. UnifSp  /\  W  e. 
TopSp  /\  P  e.  X
)  ->  ( ( nei `  J ) `  { P } )  e.  ( fBas `  X
) )
14 eqid 2622 . . . . . . . . . 10  |-  ( w
" { P }
)  =  ( w
" { P }
)
15 imaeq1 5461 . . . . . . . . . . . 12  |-  ( v  =  w  ->  (
v " { P } )  =  ( w " { P } ) )
1615eqeq2d 2632 . . . . . . . . . . 11  |-  ( v  =  w  ->  (
( w " { P } )  =  ( v " { P } )  <->  ( w " { P } )  =  ( w " { P } ) ) )
1716rspcev 3309 . . . . . . . . . 10  |-  ( ( w  e.  U  /\  ( w " { P } )  =  ( w " { P } ) )  ->  E. v  e.  U  ( w " { P } )  =  ( v " { P } ) )
1814, 17mpan2 707 . . . . . . . . 9  |-  ( w  e.  U  ->  E. v  e.  U  ( w " { P } )  =  ( v " { P } ) )
19 vex 3203 . . . . . . . . . . 11  |-  w  e. 
_V
2019imaex 7104 . . . . . . . . . 10  |-  ( w
" { P }
)  e.  _V
21 eqid 2622 . . . . . . . . . . 11  |-  ( v  e.  U  |->  ( v
" { P }
) )  =  ( v  e.  U  |->  ( v " { P } ) )
2221elrnmpt 5372 . . . . . . . . . 10  |-  ( ( w " { P } )  e.  _V  ->  ( ( w " { P } )  e. 
ran  ( v  e.  U  |->  ( v " { P } ) )  <->  E. v  e.  U  ( w " { P } )  =  ( v " { P } ) ) )
2320, 22ax-mp 5 . . . . . . . . 9  |-  ( ( w " { P } )  e.  ran  ( v  e.  U  |->  ( v " { P } ) )  <->  E. v  e.  U  ( w " { P } )  =  ( v " { P } ) )
2418, 23sylibr 224 . . . . . . . 8  |-  ( w  e.  U  ->  (
w " { P } )  e.  ran  ( v  e.  U  |->  ( v " { P } ) ) )
2524ad2antlr 763 . . . . . . 7  |-  ( ( ( ( ( W  e. UnifSp  /\  W  e.  TopSp  /\  P  e.  X )  /\  v  e.  U
)  /\  w  e.  U )  /\  (
( w " { P } )  X.  (
w " { P } ) )  C_  v )  ->  (
w " { P } )  e.  ran  ( v  e.  U  |->  ( v " { P } ) ) )
26 neipcfilu.u . . . . . . . . . . . . 13  |-  U  =  (UnifSt `  W )
272, 26, 3isusp 22065 . . . . . . . . . . . 12  |-  ( W  e. UnifSp 
<->  ( U  e.  (UnifOn `  X )  /\  J  =  (unifTop `  U )
) )
2827simplbi 476 . . . . . . . . . . 11  |-  ( W  e. UnifSp  ->  U  e.  (UnifOn `  X ) )
29283ad2ant1 1082 . . . . . . . . . 10  |-  ( ( W  e. UnifSp  /\  W  e. 
TopSp  /\  P  e.  X
)  ->  U  e.  (UnifOn `  X ) )
30 eqid 2622 . . . . . . . . . . 11  |-  (unifTop `  U
)  =  (unifTop `  U
)
3130utopsnneip 22052 . . . . . . . . . 10  |-  ( ( U  e.  (UnifOn `  X )  /\  P  e.  X )  ->  (
( nei `  (unifTop `  U ) ) `  { P } )  =  ran  ( v  e.  U  |->  ( v " { P } ) ) )
3229, 6, 31syl2anc 693 . . . . . . . . 9  |-  ( ( W  e. UnifSp  /\  W  e. 
TopSp  /\  P  e.  X
)  ->  ( ( nei `  (unifTop `  U
) ) `  { P } )  =  ran  ( v  e.  U  |->  ( v " { P } ) ) )
3332eleq2d 2687 . . . . . . . 8  |-  ( ( W  e. UnifSp  /\  W  e. 
TopSp  /\  P  e.  X
)  ->  ( (
w " { P } )  e.  ( ( nei `  (unifTop `  U ) ) `  { P } )  <->  ( w " { P } )  e.  ran  ( v  e.  U  |->  ( v
" { P }
) ) ) )
3433ad3antrrr 766 . . . . . . 7  |-  ( ( ( ( ( W  e. UnifSp  /\  W  e.  TopSp  /\  P  e.  X )  /\  v  e.  U
)  /\  w  e.  U )  /\  (
( w " { P } )  X.  (
w " { P } ) )  C_  v )  ->  (
( w " { P } )  e.  ( ( nei `  (unifTop `  U ) ) `  { P } )  <->  ( w " { P } )  e.  ran  ( v  e.  U  |->  ( v
" { P }
) ) ) )
3525, 34mpbird 247 . . . . . 6  |-  ( ( ( ( ( W  e. UnifSp  /\  W  e.  TopSp  /\  P  e.  X )  /\  v  e.  U
)  /\  w  e.  U )  /\  (
( w " { P } )  X.  (
w " { P } ) )  C_  v )  ->  (
w " { P } )  e.  ( ( nei `  (unifTop `  U ) ) `  { P } ) )
36 simpl1 1064 . . . . . . . . . 10  |-  ( ( ( W  e. UnifSp  /\  W  e.  TopSp  /\  P  e.  X )  /\  (
v  e.  U  /\  w  e.  U  /\  ( ( w " { P } )  X.  ( w " { P } ) )  C_  v ) )  ->  W  e. UnifSp )
37363anassrs 1290 . . . . . . . . 9  |-  ( ( ( ( ( W  e. UnifSp  /\  W  e.  TopSp  /\  P  e.  X )  /\  v  e.  U
)  /\  w  e.  U )  /\  (
( w " { P } )  X.  (
w " { P } ) )  C_  v )  ->  W  e. UnifSp )
3827simprbi 480 . . . . . . . . 9  |-  ( W  e. UnifSp  ->  J  =  (unifTop `  U ) )
3937, 38syl 17 . . . . . . . 8  |-  ( ( ( ( ( W  e. UnifSp  /\  W  e.  TopSp  /\  P  e.  X )  /\  v  e.  U
)  /\  w  e.  U )  /\  (
( w " { P } )  X.  (
w " { P } ) )  C_  v )  ->  J  =  (unifTop `  U )
)
4039fveq2d 6195 . . . . . . 7  |-  ( ( ( ( ( W  e. UnifSp  /\  W  e.  TopSp  /\  P  e.  X )  /\  v  e.  U
)  /\  w  e.  U )  /\  (
( w " { P } )  X.  (
w " { P } ) )  C_  v )  ->  ( nei `  J )  =  ( nei `  (unifTop `  U ) ) )
4140fveq1d 6193 . . . . . 6  |-  ( ( ( ( ( W  e. UnifSp  /\  W  e.  TopSp  /\  P  e.  X )  /\  v  e.  U
)  /\  w  e.  U )  /\  (
( w " { P } )  X.  (
w " { P } ) )  C_  v )  ->  (
( nei `  J
) `  { P } )  =  ( ( nei `  (unifTop `  U ) ) `  { P } ) )
4235, 41eleqtrrd 2704 . . . . 5  |-  ( ( ( ( ( W  e. UnifSp  /\  W  e.  TopSp  /\  P  e.  X )  /\  v  e.  U
)  /\  w  e.  U )  /\  (
( w " { P } )  X.  (
w " { P } ) )  C_  v )  ->  (
w " { P } )  e.  ( ( nei `  J
) `  { P } ) )
43 simpr 477 . . . . 5  |-  ( ( ( ( ( W  e. UnifSp  /\  W  e.  TopSp  /\  P  e.  X )  /\  v  e.  U
)  /\  w  e.  U )  /\  (
( w " { P } )  X.  (
w " { P } ) )  C_  v )  ->  (
( w " { P } )  X.  (
w " { P } ) )  C_  v )
44 id 22 . . . . . . . 8  |-  ( a  =  ( w " { P } )  -> 
a  =  ( w
" { P }
) )
4544sqxpeqd 5141 . . . . . . 7  |-  ( a  =  ( w " { P } )  -> 
( a  X.  a
)  =  ( ( w " { P } )  X.  (
w " { P } ) ) )
4645sseq1d 3632 . . . . . 6  |-  ( a  =  ( w " { P } )  -> 
( ( a  X.  a )  C_  v  <->  ( ( w " { P } )  X.  (
w " { P } ) )  C_  v ) )
4746rspcev 3309 . . . . 5  |-  ( ( ( w " { P } )  e.  ( ( nei `  J
) `  { P } )  /\  (
( w " { P } )  X.  (
w " { P } ) )  C_  v )  ->  E. a  e.  ( ( nei `  J
) `  { P } ) ( a  X.  a )  C_  v )
4842, 43, 47syl2anc 693 . . . 4  |-  ( ( ( ( ( W  e. UnifSp  /\  W  e.  TopSp  /\  P  e.  X )  /\  v  e.  U
)  /\  w  e.  U )  /\  (
( w " { P } )  X.  (
w " { P } ) )  C_  v )  ->  E. a  e.  ( ( nei `  J
) `  { P } ) ( a  X.  a )  C_  v )
4929adantr 481 . . . . 5  |-  ( ( ( W  e. UnifSp  /\  W  e.  TopSp  /\  P  e.  X )  /\  v  e.  U )  ->  U  e.  (UnifOn `  X )
)
506adantr 481 . . . . 5  |-  ( ( ( W  e. UnifSp  /\  W  e.  TopSp  /\  P  e.  X )  /\  v  e.  U )  ->  P  e.  X )
51 simpr 477 . . . . 5  |-  ( ( ( W  e. UnifSp  /\  W  e.  TopSp  /\  P  e.  X )  /\  v  e.  U )  ->  v  e.  U )
52 simpll1 1100 . . . . . . . 8  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U
)  /\  u  e.  U )  /\  (
u  o.  u ) 
C_  v )  ->  U  e.  (UnifOn `  X
) )
53 simplr 792 . . . . . . . 8  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U
)  /\  u  e.  U )  /\  (
u  o.  u ) 
C_  v )  ->  u  e.  U )
54 ustexsym 22019 . . . . . . . 8  |-  ( ( U  e.  (UnifOn `  X )  /\  u  e.  U )  ->  E. w  e.  U  ( `' w  =  w  /\  w  C_  u ) )
5552, 53, 54syl2anc 693 . . . . . . 7  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U
)  /\  u  e.  U )  /\  (
u  o.  u ) 
C_  v )  ->  E. w  e.  U  ( `' w  =  w  /\  w  C_  u ) )
5652ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U )  /\  u  e.  U )  /\  (
u  o.  u ) 
C_  v )  /\  w  e.  U )  /\  ( `' w  =  w  /\  w  C_  u ) )  ->  U  e.  (UnifOn `  X
) )
57 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U )  /\  u  e.  U )  /\  (
u  o.  u ) 
C_  v )  /\  w  e.  U )  /\  ( `' w  =  w  /\  w  C_  u ) )  ->  w  e.  U )
58 ustssxp 22008 . . . . . . . . . . . 12  |-  ( ( U  e.  (UnifOn `  X )  /\  w  e.  U )  ->  w  C_  ( X  X.  X
) )
5956, 57, 58syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U )  /\  u  e.  U )  /\  (
u  o.  u ) 
C_  v )  /\  w  e.  U )  /\  ( `' w  =  w  /\  w  C_  u ) )  ->  w  C_  ( X  X.  X ) )
60 simpll2 1101 . . . . . . . . . . . 12  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U
)  /\  u  e.  U )  /\  (
( u  o.  u
)  C_  v  /\  w  e.  U  /\  ( `' w  =  w  /\  w  C_  u ) ) )  ->  P  e.  X )
61603anassrs 1290 . . . . . . . . . . 11  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U )  /\  u  e.  U )  /\  (
u  o.  u ) 
C_  v )  /\  w  e.  U )  /\  ( `' w  =  w  /\  w  C_  u ) )  ->  P  e.  X )
62 ustneism 22027 . . . . . . . . . . 11  |-  ( ( w  C_  ( X  X.  X )  /\  P  e.  X )  ->  (
( w " { P } )  X.  (
w " { P } ) )  C_  ( w  o.  `' w ) )
6359, 61, 62syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U )  /\  u  e.  U )  /\  (
u  o.  u ) 
C_  v )  /\  w  e.  U )  /\  ( `' w  =  w  /\  w  C_  u ) )  -> 
( ( w " { P } )  X.  ( w " { P } ) )  C_  ( w  o.  `' w ) )
64 simprl 794 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U )  /\  u  e.  U )  /\  (
u  o.  u ) 
C_  v )  /\  w  e.  U )  /\  ( `' w  =  w  /\  w  C_  u ) )  ->  `' w  =  w
)
6564coeq2d 5284 . . . . . . . . . . 11  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U )  /\  u  e.  U )  /\  (
u  o.  u ) 
C_  v )  /\  w  e.  U )  /\  ( `' w  =  w  /\  w  C_  u ) )  -> 
( w  o.  `' w )  =  ( w  o.  w ) )
66 coss1 5277 . . . . . . . . . . . . . 14  |-  ( w 
C_  u  ->  (
w  o.  w ) 
C_  ( u  o.  w ) )
67 coss2 5278 . . . . . . . . . . . . . 14  |-  ( w 
C_  u  ->  (
u  o.  w ) 
C_  ( u  o.  u ) )
6866, 67sstrd 3613 . . . . . . . . . . . . 13  |-  ( w 
C_  u  ->  (
w  o.  w ) 
C_  ( u  o.  u ) )
6968ad2antll 765 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U )  /\  u  e.  U )  /\  (
u  o.  u ) 
C_  v )  /\  w  e.  U )  /\  ( `' w  =  w  /\  w  C_  u ) )  -> 
( w  o.  w
)  C_  ( u  o.  u ) )
70 simpllr 799 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U )  /\  u  e.  U )  /\  (
u  o.  u ) 
C_  v )  /\  w  e.  U )  /\  ( `' w  =  w  /\  w  C_  u ) )  -> 
( u  o.  u
)  C_  v )
7169, 70sstrd 3613 . . . . . . . . . . 11  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U )  /\  u  e.  U )  /\  (
u  o.  u ) 
C_  v )  /\  w  e.  U )  /\  ( `' w  =  w  /\  w  C_  u ) )  -> 
( w  o.  w
)  C_  v )
7265, 71eqsstrd 3639 . . . . . . . . . 10  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U )  /\  u  e.  U )  /\  (
u  o.  u ) 
C_  v )  /\  w  e.  U )  /\  ( `' w  =  w  /\  w  C_  u ) )  -> 
( w  o.  `' w )  C_  v
)
7363, 72sstrd 3613 . . . . . . . . 9  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U )  /\  u  e.  U )  /\  (
u  o.  u ) 
C_  v )  /\  w  e.  U )  /\  ( `' w  =  w  /\  w  C_  u ) )  -> 
( ( w " { P } )  X.  ( w " { P } ) )  C_  v )
7473ex 450 . . . . . . . 8  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  P  e.  X  /\  v  e.  U
)  /\  u  e.  U )  /\  (
u  o.  u ) 
C_  v )  /\  w  e.  U )  ->  ( ( `' w  =  w  /\  w  C_  u )  ->  (
( w " { P } )  X.  (
w " { P } ) )  C_  v ) )
7574reximdva 3017 . . . . . . 7  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U
)  /\  u  e.  U )  /\  (
u  o.  u ) 
C_  v )  -> 
( E. w  e.  U  ( `' w  =  w  /\  w  C_  u )  ->  E. w  e.  U  ( (
w " { P } )  X.  (
w " { P } ) )  C_  v ) )
7655, 75mpd 15 . . . . . 6  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U
)  /\  u  e.  U )  /\  (
u  o.  u ) 
C_  v )  ->  E. w  e.  U  ( ( w " { P } )  X.  ( w " { P } ) )  C_  v )
77 ustexhalf 22014 . . . . . . 7  |-  ( ( U  e.  (UnifOn `  X )  /\  v  e.  U )  ->  E. u  e.  U  ( u  o.  u )  C_  v
)
78773adant2 1080 . . . . . 6  |-  ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U )  ->  E. u  e.  U  ( u  o.  u )  C_  v
)
7976, 78r19.29a 3078 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  P  e.  X  /\  v  e.  U )  ->  E. w  e.  U  ( (
w " { P } )  X.  (
w " { P } ) )  C_  v )
8049, 50, 51, 79syl3anc 1326 . . . 4  |-  ( ( ( W  e. UnifSp  /\  W  e.  TopSp  /\  P  e.  X )  /\  v  e.  U )  ->  E. w  e.  U  ( (
w " { P } )  X.  (
w " { P } ) )  C_  v )
8148, 80r19.29a 3078 . . 3  |-  ( ( ( W  e. UnifSp  /\  W  e.  TopSp  /\  P  e.  X )  /\  v  e.  U )  ->  E. a  e.  ( ( nei `  J
) `  { P } ) ( a  X.  a )  C_  v )
8281ralrimiva 2966 . 2  |-  ( ( W  e. UnifSp  /\  W  e. 
TopSp  /\  P  e.  X
)  ->  A. v  e.  U  E. a  e.  ( ( nei `  J
) `  { P } ) ( a  X.  a )  C_  v )
83 iscfilu 22092 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  ( (
( nei `  J
) `  { P } )  e.  (CauFilu `  U )  <->  ( (
( nei `  J
) `  { P } )  e.  (
fBas `  X )  /\  A. v  e.  U  E. a  e.  (
( nei `  J
) `  { P } ) ( a  X.  a )  C_  v ) ) )
8429, 83syl 17 . 2  |-  ( ( W  e. UnifSp  /\  W  e. 
TopSp  /\  P  e.  X
)  ->  ( (
( nei `  J
) `  { P } )  e.  (CauFilu `  U )  <->  ( (
( nei `  J
) `  { P } )  e.  (
fBas `  X )  /\  A. v  e.  U  E. a  e.  (
( nei `  J
) `  { P } ) ( a  X.  a )  C_  v ) ) )
8513, 82, 84mpbir2and 957 1  |-  ( ( W  e. UnifSp  /\  W  e. 
TopSp  /\  P  e.  X
)  ->  ( ( nei `  J ) `  { P } )  e.  (CauFilu `  U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {csn 4177    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   ran crn 5115   "cima 5117    o. ccom 5118   ` cfv 5888   Basecbs 15857   TopOpenctopn 16082   fBascfbas 19734  TopOnctopon 20715   TopSpctps 20736   neicnei 20901   Filcfil 21649  UnifOncust 22003  unifTopcutop 22034  UnifStcuss 22057  UnifSpcusp 22058  CauFiluccfilu 22090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-fbas 19743  df-top 20699  df-topon 20716  df-topsp 20737  df-nei 20902  df-fil 21650  df-ust 22004  df-utop 22035  df-usp 22061  df-cfilu 22091
This theorem is referenced by:  ucnextcn  22108
  Copyright terms: Public domain W3C validator