MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuni Structured version   Visualization version   Unicode version

Theorem ustuni 22030
Description: The set union of a uniform structure is the Cartesian product of its base. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Assertion
Ref Expression
ustuni  |-  ( U  e.  (UnifOn `  X
)  ->  U. U  =  ( X  X.  X
) )

Proof of Theorem ustuni
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 ustbasel 22010 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  ( X  X.  X )  e.  U
)
2 ustssxp 22008 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  u  e.  U )  ->  u  C_  ( X  X.  X
) )
32ralrimiva 2966 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  A. u  e.  U  u  C_  ( X  X.  X ) )
4 pwssb 4612 . . 3  |-  ( U 
C_  ~P ( X  X.  X )  <->  A. u  e.  U  u  C_  ( X  X.  X ) )
53, 4sylibr 224 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  U  C_  ~P ( X  X.  X
) )
6 elpwuni 4616 . . 3  |-  ( ( X  X.  X )  e.  U  ->  ( U  C_  ~P ( X  X.  X )  <->  U. U  =  ( X  X.  X
) ) )
76biimpa 501 . 2  |-  ( ( ( X  X.  X
)  e.  U  /\  U  C_  ~P ( X  X.  X ) )  ->  U. U  =  ( X  X.  X ) )
81, 5, 7syl2anc 693 1  |-  ( U  e.  (UnifOn `  X
)  ->  U. U  =  ( X  X.  X
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   ~Pcpw 4158   U.cuni 4436    X. cxp 5112   ` cfv 5888  UnifOncust 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ust 22004
This theorem is referenced by:  tususs  22074  cnflduss  23152
  Copyright terms: Public domain W3C validator