MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcval Structured version   Visualization version   Unicode version

Theorem uvcval 20124
Description: Value of a single unit vector in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypotheses
Ref Expression
uvcfval.u  |-  U  =  ( R unitVec  I )
uvcfval.o  |-  .1.  =  ( 1r `  R )
uvcfval.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
uvcval  |-  ( ( R  e.  V  /\  I  e.  W  /\  J  e.  I )  ->  ( U `  J
)  =  ( k  e.  I  |->  if ( k  =  J ,  .1.  ,  .0.  ) ) )
Distinct variable groups:    .1. , k    R, k    k, I    .0. , k    k, J
Allowed substitution hints:    U( k)    V( k)    W( k)

Proof of Theorem uvcval
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 uvcfval.u . . . . 5  |-  U  =  ( R unitVec  I )
2 uvcfval.o . . . . 5  |-  .1.  =  ( 1r `  R )
3 uvcfval.z . . . . 5  |-  .0.  =  ( 0g `  R )
41, 2, 3uvcfval 20123 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  U  =  ( j  e.  I  |->  ( k  e.  I  |->  if ( k  =  j ,  .1.  ,  .0.  )
) ) )
54fveq1d 6193 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( U `  J
)  =  ( ( j  e.  I  |->  ( k  e.  I  |->  if ( k  =  j ,  .1.  ,  .0.  ) ) ) `  J ) )
653adant3 1081 . 2  |-  ( ( R  e.  V  /\  I  e.  W  /\  J  e.  I )  ->  ( U `  J
)  =  ( ( j  e.  I  |->  ( k  e.  I  |->  if ( k  =  j ,  .1.  ,  .0.  ) ) ) `  J ) )
7 simp3 1063 . . 3  |-  ( ( R  e.  V  /\  I  e.  W  /\  J  e.  I )  ->  J  e.  I )
8 mptexg 6484 . . . 4  |-  ( I  e.  W  ->  (
k  e.  I  |->  if ( k  =  J ,  .1.  ,  .0.  ) )  e.  _V )
983ad2ant2 1083 . . 3  |-  ( ( R  e.  V  /\  I  e.  W  /\  J  e.  I )  ->  ( k  e.  I  |->  if ( k  =  J ,  .1.  ,  .0.  ) )  e.  _V )
10 eqeq2 2633 . . . . . 6  |-  ( j  =  J  ->  (
k  =  j  <->  k  =  J ) )
1110ifbid 4108 . . . . 5  |-  ( j  =  J  ->  if ( k  =  j ,  .1.  ,  .0.  )  =  if (
k  =  J ,  .1.  ,  .0.  ) )
1211mpteq2dv 4745 . . . 4  |-  ( j  =  J  ->  (
k  e.  I  |->  if ( k  =  j ,  .1.  ,  .0.  ) )  =  ( k  e.  I  |->  if ( k  =  J ,  .1.  ,  .0.  ) ) )
13 eqid 2622 . . . 4  |-  ( j  e.  I  |->  ( k  e.  I  |->  if ( k  =  j ,  .1.  ,  .0.  )
) )  =  ( j  e.  I  |->  ( k  e.  I  |->  if ( k  =  j ,  .1.  ,  .0.  ) ) )
1412, 13fvmptg 6280 . . 3  |-  ( ( J  e.  I  /\  ( k  e.  I  |->  if ( k  =  J ,  .1.  ,  .0.  ) )  e.  _V )  ->  ( ( j  e.  I  |->  ( k  e.  I  |->  if ( k  =  j ,  .1.  ,  .0.  )
) ) `  J
)  =  ( k  e.  I  |->  if ( k  =  J ,  .1.  ,  .0.  ) ) )
157, 9, 14syl2anc 693 . 2  |-  ( ( R  e.  V  /\  I  e.  W  /\  J  e.  I )  ->  ( ( j  e.  I  |->  ( k  e.  I  |->  if ( k  =  j ,  .1.  ,  .0.  ) ) ) `
 J )  =  ( k  e.  I  |->  if ( k  =  J ,  .1.  ,  .0.  ) ) )
166, 15eqtrd 2656 1  |-  ( ( R  e.  V  /\  I  e.  W  /\  J  e.  I )  ->  ( U `  J
)  =  ( k  e.  I  |->  if ( k  =  J ,  .1.  ,  .0.  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   ifcif 4086    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   0gc0g 16100   1rcur 18501   unitVec cuvc 20121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-uvc 20122
This theorem is referenced by:  uvcvval  20125
  Copyright terms: Public domain W3C validator