MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcfval Structured version   Visualization version   Unicode version

Theorem uvcfval 20123
Description: Value of the unit-vector generator for a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
uvcfval.u  |-  U  =  ( R unitVec  I )
uvcfval.o  |-  .1.  =  ( 1r `  R )
uvcfval.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
uvcfval  |-  ( ( R  e.  V  /\  I  e.  W )  ->  U  =  ( j  e.  I  |->  ( k  e.  I  |->  if ( k  =  j ,  .1.  ,  .0.  )
) ) )
Distinct variable groups:    .1. , j,
k    R, j, k    j, I, k    .0. , j, k
Allowed substitution hints:    U( j, k)    V( j, k)    W( j, k)

Proof of Theorem uvcfval
Dummy variables  i 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvcfval.u . 2  |-  U  =  ( R unitVec  I )
2 elex 3212 . . 3  |-  ( R  e.  V  ->  R  e.  _V )
3 elex 3212 . . 3  |-  ( I  e.  W  ->  I  e.  _V )
4 df-uvc 20122 . . . . 5  |- unitVec  =  ( r  e.  _V , 
i  e.  _V  |->  ( j  e.  i  |->  ( k  e.  i  |->  if ( k  =  j ,  ( 1r `  r ) ,  ( 0g `  r ) ) ) ) )
54a1i 11 . . . 4  |-  ( ( R  e.  _V  /\  I  e.  _V )  -> unitVec 
=  ( r  e. 
_V ,  i  e. 
_V  |->  ( j  e.  i  |->  ( k  e.  i  |->  if ( k  =  j ,  ( 1r `  r ) ,  ( 0g `  r ) ) ) ) ) )
6 simpr 477 . . . . . 6  |-  ( ( r  =  R  /\  i  =  I )  ->  i  =  I )
7 fveq2 6191 . . . . . . . . . 10  |-  ( r  =  R  ->  ( 1r `  r )  =  ( 1r `  R
) )
8 uvcfval.o . . . . . . . . . 10  |-  .1.  =  ( 1r `  R )
97, 8syl6eqr 2674 . . . . . . . . 9  |-  ( r  =  R  ->  ( 1r `  r )  =  .1.  )
10 fveq2 6191 . . . . . . . . . 10  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
11 uvcfval.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  R )
1210, 11syl6eqr 2674 . . . . . . . . 9  |-  ( r  =  R  ->  ( 0g `  r )  =  .0.  )
139, 12ifeq12d 4106 . . . . . . . 8  |-  ( r  =  R  ->  if ( k  =  j ,  ( 1r `  r ) ,  ( 0g `  r ) )  =  if ( k  =  j ,  .1.  ,  .0.  )
)
1413adantr 481 . . . . . . 7  |-  ( ( r  =  R  /\  i  =  I )  ->  if ( k  =  j ,  ( 1r
`  r ) ,  ( 0g `  r
) )  =  if ( k  =  j ,  .1.  ,  .0.  ) )
156, 14mpteq12dv 4733 . . . . . 6  |-  ( ( r  =  R  /\  i  =  I )  ->  ( k  e.  i 
|->  if ( k  =  j ,  ( 1r
`  r ) ,  ( 0g `  r
) ) )  =  ( k  e.  I  |->  if ( k  =  j ,  .1.  ,  .0.  ) ) )
166, 15mpteq12dv 4733 . . . . 5  |-  ( ( r  =  R  /\  i  =  I )  ->  ( j  e.  i 
|->  ( k  e.  i 
|->  if ( k  =  j ,  ( 1r
`  r ) ,  ( 0g `  r
) ) ) )  =  ( j  e.  I  |->  ( k  e.  I  |->  if ( k  =  j ,  .1.  ,  .0.  ) ) ) )
1716adantl 482 . . . 4  |-  ( ( ( R  e.  _V  /\  I  e.  _V )  /\  ( r  =  R  /\  i  =  I ) )  ->  (
j  e.  i  |->  ( k  e.  i  |->  if ( k  =  j ,  ( 1r `  r ) ,  ( 0g `  r ) ) ) )  =  ( j  e.  I  |->  ( k  e.  I  |->  if ( k  =  j ,  .1.  ,  .0.  ) ) ) )
18 simpl 473 . . . 4  |-  ( ( R  e.  _V  /\  I  e.  _V )  ->  R  e.  _V )
19 simpr 477 . . . 4  |-  ( ( R  e.  _V  /\  I  e.  _V )  ->  I  e.  _V )
20 mptexg 6484 . . . . 5  |-  ( I  e.  _V  ->  (
j  e.  I  |->  ( k  e.  I  |->  if ( k  =  j ,  .1.  ,  .0.  ) ) )  e. 
_V )
2120adantl 482 . . . 4  |-  ( ( R  e.  _V  /\  I  e.  _V )  ->  ( j  e.  I  |->  ( k  e.  I  |->  if ( k  =  j ,  .1.  ,  .0.  ) ) )  e. 
_V )
225, 17, 18, 19, 21ovmpt2d 6788 . . 3  |-  ( ( R  e.  _V  /\  I  e.  _V )  ->  ( R unitVec  I )  =  ( j  e.  I  |->  ( k  e.  I  |->  if ( k  =  j ,  .1.  ,  .0.  ) ) ) )
232, 3, 22syl2an 494 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( R unitVec  I )  =  ( j  e.  I  |->  ( k  e.  I  |->  if ( k  =  j ,  .1.  ,  .0.  ) ) ) )
241, 23syl5eq 2668 1  |-  ( ( R  e.  V  /\  I  e.  W )  ->  U  =  ( j  e.  I  |->  ( k  e.  I  |->  if ( k  =  j ,  .1.  ,  .0.  )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   ifcif 4086    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0gc0g 16100   1rcur 18501   unitVec cuvc 20121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-uvc 20122
This theorem is referenced by:  uvcval  20124  uvcff  20130
  Copyright terms: Public domain W3C validator