Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf2mpt Structured version   Visualization version   Unicode version

Theorem climinf2mpt 39946
Description: A bounded below, monotonic non increasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climinf2mpt.p  |-  F/ k
ph
climinf2mpt.j  |-  F/ j
ph
climinf2mpt.m  |-  ( ph  ->  M  e.  ZZ )
climinf2mpt.z  |-  Z  =  ( ZZ>= `  M )
climinf2mpt.b  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR )
climinf2mpt.c  |-  ( k  =  j  ->  B  =  C )
climinf2mpt.l  |-  ( (
ph  /\  k  e.  Z  /\  j  =  ( k  +  1 ) )  ->  C  <_  B )
climinf2mpt.e  |-  ( ph  ->  ( k  e.  Z  |->  B )  e.  dom  ~~>  )
Assertion
Ref Expression
climinf2mpt  |-  ( ph  ->  ( k  e.  Z  |->  B )  ~~> inf ( ran  ( k  e.  Z  |->  B ) ,  RR* ,  <  ) )
Distinct variable groups:    B, j    C, k    j, Z, k
Allowed substitution hints:    ph( j, k)    B( k)    C( j)    M( j, k)

Proof of Theorem climinf2mpt
Dummy variables  i  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . 2  |-  F/ i
ph
2 nfcv 2764 . 2  |-  F/_ i
( k  e.  Z  |->  B )
3 climinf2mpt.z . 2  |-  Z  =  ( ZZ>= `  M )
4 climinf2mpt.m . 2  |-  ( ph  ->  M  e.  ZZ )
5 climinf2mpt.p . . 3  |-  F/ k
ph
6 climinf2mpt.b . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR )
75, 6fmptd2f 39442 . 2  |-  ( ph  ->  ( k  e.  Z  |->  B ) : Z --> RR )
8 nfv 1843 . . . . . . 7  |-  F/ k  i  e.  Z
95, 8nfan 1828 . . . . . 6  |-  F/ k ( ph  /\  i  e.  Z )
10 nfv 1843 . . . . . 6  |-  F/ k
[_ ( i  +  1 )  /  j ]_ C  <_  [_ i  /  j ]_ C
119, 10nfim 1825 . . . . 5  |-  F/ k ( ( ph  /\  i  e.  Z )  ->  [_ ( i  +  1 )  /  j ]_ C  <_  [_ i  /  j ]_ C
)
12 eleq1 2689 . . . . . . 7  |-  ( k  =  i  ->  (
k  e.  Z  <->  i  e.  Z ) )
1312anbi2d 740 . . . . . 6  |-  ( k  =  i  ->  (
( ph  /\  k  e.  Z )  <->  ( ph  /\  i  e.  Z ) ) )
14 oveq1 6657 . . . . . . . 8  |-  ( k  =  i  ->  (
k  +  1 )  =  ( i  +  1 ) )
1514csbeq1d 3540 . . . . . . 7  |-  ( k  =  i  ->  [_ (
k  +  1 )  /  j ]_ C  =  [_ ( i  +  1 )  /  j ]_ C )
16 eqidd 2623 . . . . . . . 8  |-  ( k  =  i  ->  B  =  B )
17 csbco 3543 . . . . . . . . . . 11  |-  [_ k  /  j ]_ [_ j  /  k ]_ B  =  [_ k  /  k ]_ B
18 csbid 3541 . . . . . . . . . . 11  |-  [_ k  /  k ]_ B  =  B
1917, 18eqtr2i 2645 . . . . . . . . . 10  |-  B  = 
[_ k  /  j ]_ [_ j  /  k ]_ B
20 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ j B
21 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ k C
22 climinf2mpt.c . . . . . . . . . . . . 13  |-  ( k  =  j  ->  B  =  C )
2320, 21, 22cbvcsb 3538 . . . . . . . . . . . 12  |-  [_ j  /  k ]_ B  =  [_ j  /  j ]_ C
24 csbid 3541 . . . . . . . . . . . 12  |-  [_ j  /  j ]_ C  =  C
2523, 24eqtri 2644 . . . . . . . . . . 11  |-  [_ j  /  k ]_ B  =  C
2625csbeq2i 3993 . . . . . . . . . 10  |-  [_ k  /  j ]_ [_ j  /  k ]_ B  =  [_ k  /  j ]_ C
2719, 26eqtri 2644 . . . . . . . . 9  |-  B  = 
[_ k  /  j ]_ C
2827a1i 11 . . . . . . . 8  |-  ( k  =  i  ->  B  =  [_ k  /  j ]_ C )
29 csbeq1 3536 . . . . . . . 8  |-  ( k  =  i  ->  [_ k  /  j ]_ C  =  [_ i  /  j ]_ C )
3016, 28, 293eqtrd 2660 . . . . . . 7  |-  ( k  =  i  ->  B  =  [_ i  /  j ]_ C )
3115, 30breq12d 4666 . . . . . 6  |-  ( k  =  i  ->  ( [_ ( k  +  1 )  /  j ]_ C  <_  B  <->  [_ ( i  +  1 )  / 
j ]_ C  <_  [_ i  /  j ]_ C
) )
3213, 31imbi12d 334 . . . . 5  |-  ( k  =  i  ->  (
( ( ph  /\  k  e.  Z )  ->  [_ ( k  +  1 )  /  j ]_ C  <_  B )  <-> 
( ( ph  /\  i  e.  Z )  ->  [_ ( i  +  1 )  /  j ]_ C  <_  [_ i  /  j ]_ C
) ) )
33 simpl 473 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ph )
34 simpr 477 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
35 eqidd 2623 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  (
k  +  1 )  =  ( k  +  1 ) )
36 climinf2mpt.j . . . . . . . . 9  |-  F/ j
ph
37 nfv 1843 . . . . . . . . 9  |-  F/ j  k  e.  Z
38 nfv 1843 . . . . . . . . 9  |-  F/ j ( k  +  1 )  =  ( k  +  1 )
3936, 37, 38nf3an 1831 . . . . . . . 8  |-  F/ j ( ph  /\  k  e.  Z  /\  (
k  +  1 )  =  ( k  +  1 ) )
40 nfcsb1v 3549 . . . . . . . . 9  |-  F/_ j [_ ( k  +  1 )  /  j ]_ C
41 nfcv 2764 . . . . . . . . 9  |-  F/_ j  <_
4240, 41, 20nfbr 4699 . . . . . . . 8  |-  F/ j
[_ ( k  +  1 )  /  j ]_ C  <_  B
4339, 42nfim 1825 . . . . . . 7  |-  F/ j ( ( ph  /\  k  e.  Z  /\  ( k  +  1 )  =  ( k  +  1 ) )  ->  [_ ( k  +  1 )  /  j ]_ C  <_  B )
44 ovex 6678 . . . . . . 7  |-  ( k  +  1 )  e. 
_V
45 eqeq1 2626 . . . . . . . . 9  |-  ( j  =  ( k  +  1 )  ->  (
j  =  ( k  +  1 )  <->  ( k  +  1 )  =  ( k  +  1 ) ) )
46453anbi3d 1405 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  (
( ph  /\  k  e.  Z  /\  j  =  ( k  +  1 ) )  <->  ( ph  /\  k  e.  Z  /\  ( k  +  1 )  =  ( k  +  1 ) ) ) )
47 csbeq1a 3542 . . . . . . . . 9  |-  ( j  =  ( k  +  1 )  ->  C  =  [_ ( k  +  1 )  /  j ]_ C )
4847breq1d 4663 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  ( C  <_  B  <->  [_ ( k  +  1 )  / 
j ]_ C  <_  B
) )
4946, 48imbi12d 334 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  (
( ( ph  /\  k  e.  Z  /\  j  =  ( k  +  1 ) )  ->  C  <_  B
)  <->  ( ( ph  /\  k  e.  Z  /\  ( k  +  1 )  =  ( k  +  1 ) )  ->  [_ ( k  +  1 )  /  j ]_ C  <_  B ) ) )
50 climinf2mpt.l . . . . . . 7  |-  ( (
ph  /\  k  e.  Z  /\  j  =  ( k  +  1 ) )  ->  C  <_  B )
5143, 44, 49, 50vtoclf 3258 . . . . . 6  |-  ( (
ph  /\  k  e.  Z  /\  ( k  +  1 )  =  ( k  +  1 ) )  ->  [_ ( k  +  1 )  / 
j ]_ C  <_  B
)
5233, 34, 35, 51syl3anc 1326 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  [_ (
k  +  1 )  /  j ]_ C  <_  B )
5311, 32, 52chvar 2262 . . . 4  |-  ( (
ph  /\  i  e.  Z )  ->  [_ (
i  +  1 )  /  j ]_ C  <_  [_ i  /  j ]_ C )
54 csbco 3543 . . . . . . . 8  |-  [_ (
i  +  1 )  /  j ]_ [_ j  /  k ]_ B  =  [_ ( i  +  1 )  /  k ]_ B
5554eqcomi 2631 . . . . . . 7  |-  [_ (
i  +  1 )  /  k ]_ B  =  [_ ( i  +  1 )  /  j ]_ [_ j  /  k ]_ B
5625csbeq2i 3993 . . . . . . 7  |-  [_ (
i  +  1 )  /  j ]_ [_ j  /  k ]_ B  =  [_ ( i  +  1 )  /  j ]_ C
5755, 56eqtri 2644 . . . . . 6  |-  [_ (
i  +  1 )  /  k ]_ B  =  [_ ( i  +  1 )  /  j ]_ C
5857a1i 11 . . . . 5  |-  ( (
ph  /\  i  e.  Z )  ->  [_ (
i  +  1 )  /  k ]_ B  =  [_ ( i  +  1 )  /  j ]_ C )
59 eqidd 2623 . . . . 5  |-  ( (
ph  /\  i  e.  Z )  ->  [_ i  /  j ]_ C  =  [_ i  /  j ]_ C )
6058, 59breq12d 4666 . . . 4  |-  ( (
ph  /\  i  e.  Z )  ->  ( [_ ( i  +  1 )  /  k ]_ B  <_  [_ i  /  j ]_ C  <->  [_ ( i  +  1 )  /  j ]_ C  <_  [_ i  /  j ]_ C
) )
6153, 60mpbird 247 . . 3  |-  ( (
ph  /\  i  e.  Z )  ->  [_ (
i  +  1 )  /  k ]_ B  <_  [_ i  /  j ]_ C )
623peano2uzs 11742 . . . . . 6  |-  ( i  e.  Z  ->  (
i  +  1 )  e.  Z )
6362adantl 482 . . . . 5  |-  ( (
ph  /\  i  e.  Z )  ->  (
i  +  1 )  e.  Z )
64 nfv 1843 . . . . . . . . 9  |-  F/ k ( i  +  1 )  e.  Z
655, 64nfan 1828 . . . . . . . 8  |-  F/ k ( ph  /\  (
i  +  1 )  e.  Z )
66 nfcv 2764 . . . . . . . . . 10  |-  F/_ k
( i  +  1 )
6766nfcsb1 3548 . . . . . . . . 9  |-  F/_ k [_ ( i  +  1 )  /  k ]_ B
6867nfel1 2779 . . . . . . . 8  |-  F/ k
[_ ( i  +  1 )  /  k ]_ B  e.  RR
6965, 68nfim 1825 . . . . . . 7  |-  F/ k ( ( ph  /\  ( i  +  1 )  e.  Z )  ->  [_ ( i  +  1 )  /  k ]_ B  e.  RR )
70 ovex 6678 . . . . . . 7  |-  ( i  +  1 )  e. 
_V
71 eleq1 2689 . . . . . . . . 9  |-  ( k  =  ( i  +  1 )  ->  (
k  e.  Z  <->  ( i  +  1 )  e.  Z ) )
7271anbi2d 740 . . . . . . . 8  |-  ( k  =  ( i  +  1 )  ->  (
( ph  /\  k  e.  Z )  <->  ( ph  /\  ( i  +  1 )  e.  Z ) ) )
73 csbeq1a 3542 . . . . . . . . 9  |-  ( k  =  ( i  +  1 )  ->  B  =  [_ ( i  +  1 )  /  k ]_ B )
7473eleq1d 2686 . . . . . . . 8  |-  ( k  =  ( i  +  1 )  ->  ( B  e.  RR  <->  [_ ( i  +  1 )  / 
k ]_ B  e.  RR ) )
7572, 74imbi12d 334 . . . . . . 7  |-  ( k  =  ( i  +  1 )  ->  (
( ( ph  /\  k  e.  Z )  ->  B  e.  RR )  <-> 
( ( ph  /\  ( i  +  1 )  e.  Z )  ->  [_ ( i  +  1 )  /  k ]_ B  e.  RR ) ) )
7669, 70, 75, 6vtoclf 3258 . . . . . 6  |-  ( (
ph  /\  ( i  +  1 )  e.  Z )  ->  [_ (
i  +  1 )  /  k ]_ B  e.  RR )
7762, 76sylan2 491 . . . . 5  |-  ( (
ph  /\  i  e.  Z )  ->  [_ (
i  +  1 )  /  k ]_ B  e.  RR )
78 eqid 2622 . . . . . 6  |-  ( k  e.  Z  |->  B )  =  ( k  e.  Z  |->  B )
7966, 67, 73, 78fvmptf 6301 . . . . 5  |-  ( ( ( i  +  1 )  e.  Z  /\  [_ ( i  +  1 )  /  k ]_ B  e.  RR )  ->  ( ( k  e.  Z  |->  B ) `  ( i  +  1 ) )  =  [_ ( i  +  1 )  /  k ]_ B )
8063, 77, 79syl2anc 693 . . . 4  |-  ( (
ph  /\  i  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  (
i  +  1 ) )  =  [_ (
i  +  1 )  /  k ]_ B
)
81 simpr 477 . . . . 5  |-  ( (
ph  /\  i  e.  Z )  ->  i  e.  Z )
82 nfv 1843 . . . . . . . 8  |-  F/ j  i  e.  Z
8336, 82nfan 1828 . . . . . . 7  |-  F/ j ( ph  /\  i  e.  Z )
84 nfcsb1v 3549 . . . . . . . 8  |-  F/_ j [_ i  /  j ]_ C
85 nfcv 2764 . . . . . . . 8  |-  F/_ j RR
8684, 85nfel 2777 . . . . . . 7  |-  F/ j
[_ i  /  j ]_ C  e.  RR
8783, 86nfim 1825 . . . . . 6  |-  F/ j ( ( ph  /\  i  e.  Z )  ->  [_ i  /  j ]_ C  e.  RR )
88 eleq1 2689 . . . . . . . 8  |-  ( j  =  i  ->  (
j  e.  Z  <->  i  e.  Z ) )
8988anbi2d 740 . . . . . . 7  |-  ( j  =  i  ->  (
( ph  /\  j  e.  Z )  <->  ( ph  /\  i  e.  Z ) ) )
90 csbeq1a 3542 . . . . . . . 8  |-  ( j  =  i  ->  C  =  [_ i  /  j ]_ C )
9190eleq1d 2686 . . . . . . 7  |-  ( j  =  i  ->  ( C  e.  RR  <->  [_ i  / 
j ]_ C  e.  RR ) )
9289, 91imbi12d 334 . . . . . 6  |-  ( j  =  i  ->  (
( ( ph  /\  j  e.  Z )  ->  C  e.  RR )  <-> 
( ( ph  /\  i  e.  Z )  ->  [_ i  /  j ]_ C  e.  RR ) ) )
93 nfv 1843 . . . . . . . . 9  |-  F/ k  j  e.  Z
945, 93nfan 1828 . . . . . . . 8  |-  F/ k ( ph  /\  j  e.  Z )
95 nfv 1843 . . . . . . . 8  |-  F/ k  C  e.  RR
9694, 95nfim 1825 . . . . . . 7  |-  F/ k ( ( ph  /\  j  e.  Z )  ->  C  e.  RR )
97 eleq1 2689 . . . . . . . . 9  |-  ( k  =  j  ->  (
k  e.  Z  <->  j  e.  Z ) )
9897anbi2d 740 . . . . . . . 8  |-  ( k  =  j  ->  (
( ph  /\  k  e.  Z )  <->  ( ph  /\  j  e.  Z ) ) )
9922eleq1d 2686 . . . . . . . 8  |-  ( k  =  j  ->  ( B  e.  RR  <->  C  e.  RR ) )
10098, 99imbi12d 334 . . . . . . 7  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  Z )  ->  B  e.  RR )  <-> 
( ( ph  /\  j  e.  Z )  ->  C  e.  RR ) ) )
10196, 100, 6chvar 2262 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  C  e.  RR )
10287, 92, 101chvar 2262 . . . . 5  |-  ( (
ph  /\  i  e.  Z )  ->  [_ i  /  j ]_ C  e.  RR )
103 nfcv 2764 . . . . . 6  |-  F/_ k
i
104 nfcv 2764 . . . . . 6  |-  F/_ k [_ i  /  j ]_ C
105103, 104, 30, 78fvmptf 6301 . . . . 5  |-  ( ( i  e.  Z  /\  [_ i  /  j ]_ C  e.  RR )  ->  ( ( k  e.  Z  |->  B ) `  i )  =  [_ i  /  j ]_ C
)
10681, 102, 105syl2anc 693 . . . 4  |-  ( (
ph  /\  i  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  i
)  =  [_ i  /  j ]_ C
)
10780, 106breq12d 4666 . . 3  |-  ( (
ph  /\  i  e.  Z )  ->  (
( ( k  e.  Z  |->  B ) `  ( i  +  1 ) )  <_  (
( k  e.  Z  |->  B ) `  i
)  <->  [_ ( i  +  1 )  /  k ]_ B  <_  [_ i  /  j ]_ C
) )
10861, 107mpbird 247 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  (
i  +  1 ) )  <_  ( (
k  e.  Z  |->  B ) `  i ) )
109 climinf2mpt.e . . . . 5  |-  ( ph  ->  ( k  e.  Z  |->  B )  e.  dom  ~~>  )
110106, 102eqeltrd 2701 . . . . . . 7  |-  ( (
ph  /\  i  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  i
)  e.  RR )
111110recnd 10068 . . . . . 6  |-  ( (
ph  /\  i  e.  Z )  ->  (
( k  e.  Z  |->  B ) `  i
)  e.  CC )
112111ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. i  e.  Z  ( ( k  e.  Z  |->  B ) `  i )  e.  CC )
1132, 3climbddf 39919 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( k  e.  Z  |->  B )  e.  dom  ~~>  /\ 
A. i  e.  Z  ( ( k  e.  Z  |->  B ) `  i )  e.  CC )  ->  E. x  e.  RR  A. i  e.  Z  ( abs `  ( ( k  e.  Z  |->  B ) `  i ) )  <_  x )
1144, 109, 112, 113syl3anc 1326 . . . 4  |-  ( ph  ->  E. x  e.  RR  A. i  e.  Z  ( abs `  ( ( k  e.  Z  |->  B ) `  i ) )  <_  x )
1151, 110rexabsle2 39654 . . . 4  |-  ( ph  ->  ( E. x  e.  RR  A. i  e.  Z  ( abs `  (
( k  e.  Z  |->  B ) `  i
) )  <_  x  <->  ( E. x  e.  RR  A. i  e.  Z  ( ( k  e.  Z  |->  B ) `  i
)  <_  x  /\  E. x  e.  RR  A. i  e.  Z  x  <_  ( ( k  e.  Z  |->  B ) `  i ) ) ) )
116114, 115mpbid 222 . . 3  |-  ( ph  ->  ( E. x  e.  RR  A. i  e.  Z  ( ( k  e.  Z  |->  B ) `
 i )  <_  x  /\  E. x  e.  RR  A. i  e.  Z  x  <_  (
( k  e.  Z  |->  B ) `  i
) ) )
117116simprd 479 . 2  |-  ( ph  ->  E. x  e.  RR  A. i  e.  Z  x  <_  ( ( k  e.  Z  |->  B ) `
 i ) )
1181, 2, 3, 4, 7, 108, 117climinf2 39939 1  |-  ( ph  ->  ( k  e.  Z  |->  B )  ~~> inf ( ran  ( k  e.  Z  |->  B ) ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912   E.wrex 2913   [_csb 3533   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115   ` cfv 5888  (class class class)co 6650  infcinf 8347   CCcc 9934   RRcr 9935   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075   ZZcz 11377   ZZ>=cuz 11687   abscabs 13974    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  smflimsuplem4  41029
  Copyright terms: Public domain W3C validator