MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfis2f Structured version   Visualization version   Unicode version

Theorem wfis2f 5718
Description: Well Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.)
Hypotheses
Ref Expression
wfis2f.1  |-  R  We  A
wfis2f.2  |-  R Se  A
wfis2f.3  |-  F/ y ps
wfis2f.4  |-  ( y  =  z  ->  ( ph 
<->  ps ) )
wfis2f.5  |-  ( y  e.  A  ->  ( A. z  e.  Pred  ( R ,  A , 
y ) ps  ->  ph ) )
Assertion
Ref Expression
wfis2f  |-  ( y  e.  A  ->  ph )
Distinct variable groups:    y, A, z    ph, z    y, R, z
Allowed substitution hints:    ph( y)    ps( y, z)

Proof of Theorem wfis2f
StepHypRef Expression
1 wfis2f.1 . . 3  |-  R  We  A
2 wfis2f.2 . . 3  |-  R Se  A
3 wfis2f.3 . . . 4  |-  F/ y ps
4 wfis2f.4 . . . 4  |-  ( y  =  z  ->  ( ph 
<->  ps ) )
5 wfis2f.5 . . . 4  |-  ( y  e.  A  ->  ( A. z  e.  Pred  ( R ,  A , 
y ) ps  ->  ph ) )
63, 4, 5wfis2fg 5717 . . 3  |-  ( ( R  We  A  /\  R Se  A )  ->  A. y  e.  A  ph )
71, 2, 6mp2an 708 . 2  |-  A. y  e.  A  ph
87rspec 2931 1  |-  ( y  e.  A  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   F/wnf 1708    e. wcel 1990   A.wral 2912   Se wse 5071    We wwe 5072   Predcpred 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator