| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunun | Structured version Visualization version Unicode version | ||
| Description: A weak universe is closed under binary union. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wununi.1 |
|
| wununi.2 |
|
| wunpr.3 |
|
| Ref | Expression |
|---|---|
| wunun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wununi.2 |
. . 3
| |
| 2 | wunpr.3 |
. . 3
| |
| 3 | uniprg 4450 |
. . 3
| |
| 4 | 1, 2, 3 | syl2anc 693 |
. 2
|
| 5 | wununi.1 |
. . 3
| |
| 6 | 5, 1, 2 | wunpr 9531 |
. . 3
|
| 7 | 5, 6 | wununi 9528 |
. 2
|
| 8 | 4, 7 | eqeltrrd 2702 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-sn 4178 df-pr 4180 df-uni 4437 df-tr 4753 df-wun 9524 |
| This theorem is referenced by: wuntp 9533 wunsuc 9539 wunfi 9543 wunxp 9546 wuntpos 9556 wunsets 15900 catcoppccl 16758 |
| Copyright terms: Public domain | W3C validator |