MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkobval Structured version   Visualization version   Unicode version

Theorem xkobval 21389
Description: Alternative expression for the subbase of the compact-open topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypotheses
Ref Expression
xkoval.x  |-  X  = 
U. R
xkoval.k  |-  K  =  { x  e.  ~P X  |  ( Rt  x
)  e.  Comp }
xkoval.t  |-  T  =  ( k  e.  K ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )
Assertion
Ref Expression
xkobval  |-  ran  T  =  { s  |  E. k  e.  ~P  X E. v  e.  S  ( ( Rt  k )  e.  Comp  /\  s  =  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) }
Distinct variable groups:    k, s,
v, K    f, k,
s, v, x, R    S, f, k, s, v, x    T, s    k, X, x
Allowed substitution hints:    T( x, v, f, k)    K( x, f)    X( v, f, s)

Proof of Theorem xkobval
StepHypRef Expression
1 xkoval.t . . 3  |-  T  =  ( k  e.  K ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )
21rnmpt2 6770 . 2  |-  ran  T  =  { s  |  E. k  e.  K  E. v  e.  S  s  =  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } }
3 oveq2 6658 . . . . . 6  |-  ( x  =  k  ->  ( Rt  x )  =  ( Rt  k ) )
43eleq1d 2686 . . . . 5  |-  ( x  =  k  ->  (
( Rt  x )  e.  Comp  <->  ( Rt  k )  e.  Comp ) )
54rexrab 3370 . . . 4  |-  ( E. k  e.  { x  e.  ~P X  |  ( Rt  x )  e.  Comp } E. v  e.  S  s  =  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v }  <->  E. k  e.  ~P  X ( ( Rt  k )  e.  Comp  /\  E. v  e.  S  s  =  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) )
6 xkoval.k . . . . 5  |-  K  =  { x  e.  ~P X  |  ( Rt  x
)  e.  Comp }
76rexeqi 3143 . . . 4  |-  ( E. k  e.  K  E. v  e.  S  s  =  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } 
<->  E. k  e.  {
x  e.  ~P X  |  ( Rt  x )  e.  Comp } E. v  e.  S  s  =  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )
8 r19.42v 3092 . . . . 5  |-  ( E. v  e.  S  ( ( Rt  k )  e. 
Comp  /\  s  =  {
f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)  <->  ( ( Rt  k )  e.  Comp  /\  E. v  e.  S  s  =  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) )
98rexbii 3041 . . . 4  |-  ( E. k  e.  ~P  X E. v  e.  S  ( ( Rt  k )  e.  Comp  /\  s  =  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  <->  E. k  e.  ~P  X ( ( Rt  k )  e.  Comp  /\ 
E. v  e.  S  s  =  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v } ) )
105, 7, 93bitr4i 292 . . 3  |-  ( E. k  e.  K  E. v  e.  S  s  =  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } 
<->  E. k  e.  ~P  X E. v  e.  S  ( ( Rt  k )  e.  Comp  /\  s  =  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) )
1110abbii 2739 . 2  |-  { s  |  E. k  e.  K  E. v  e.  S  s  =  {
f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v } }  =  { s  |  E. k  e.  ~P  X E. v  e.  S  ( ( Rt  k )  e.  Comp  /\  s  =  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) }
122, 11eqtri 2644 1  |-  ran  T  =  { s  |  E. k  e.  ~P  X E. v  e.  S  ( ( Rt  k )  e.  Comp  /\  s  =  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   {crab 2916    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   ran crn 5115   "cima 5117  (class class class)co 6650    |-> cmpt2 6652   ↾t crest 16081    Cn ccn 21028   Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-cnv 5122  df-dm 5124  df-rn 5125  df-iota 5851  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  xkoccn  21422  xkoco1cn  21460  xkoco2cn  21461  xkoinjcn  21490
  Copyright terms: Public domain W3C validator