MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoval Structured version   Visualization version   Unicode version

Theorem xkoval 21390
Description: Value of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
xkoval.x  |-  X  = 
U. R
xkoval.k  |-  K  =  { x  e.  ~P X  |  ( Rt  x
)  e.  Comp }
xkoval.t  |-  T  =  ( k  e.  K ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )
Assertion
Ref Expression
xkoval  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( S  ^ko  R )  =  (
topGen `  ( fi `  ran  T ) ) )
Distinct variable groups:    v, k, K    f, k, v, x, R    S, f, k, v, x    k, X, x
Allowed substitution hints:    T( x, v, f, k)    K( x, f)    X( v, f)

Proof of Theorem xkoval
Dummy variables  s 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . . . . . . . 13  |-  ( ( s  =  S  /\  r  =  R )  ->  r  =  R )
21unieqd 4446 . . . . . . . . . . . 12  |-  ( ( s  =  S  /\  r  =  R )  ->  U. r  =  U. R )
3 xkoval.x . . . . . . . . . . . 12  |-  X  = 
U. R
42, 3syl6eqr 2674 . . . . . . . . . . 11  |-  ( ( s  =  S  /\  r  =  R )  ->  U. r  =  X )
54pweqd 4163 . . . . . . . . . 10  |-  ( ( s  =  S  /\  r  =  R )  ->  ~P U. r  =  ~P X )
61oveq1d 6665 . . . . . . . . . . 11  |-  ( ( s  =  S  /\  r  =  R )  ->  ( rt  x )  =  ( Rt  x ) )
76eleq1d 2686 . . . . . . . . . 10  |-  ( ( s  =  S  /\  r  =  R )  ->  ( ( rt  x )  e.  Comp  <->  ( Rt  x )  e.  Comp ) )
85, 7rabeqbidv 3195 . . . . . . . . 9  |-  ( ( s  =  S  /\  r  =  R )  ->  { x  e.  ~P U. r  |  ( rt  x )  e.  Comp }  =  { x  e.  ~P X  |  ( Rt  x
)  e.  Comp } )
9 xkoval.k . . . . . . . . 9  |-  K  =  { x  e.  ~P X  |  ( Rt  x
)  e.  Comp }
108, 9syl6eqr 2674 . . . . . . . 8  |-  ( ( s  =  S  /\  r  =  R )  ->  { x  e.  ~P U. r  |  ( rt  x )  e.  Comp }  =  K )
11 simpl 473 . . . . . . . 8  |-  ( ( s  =  S  /\  r  =  R )  ->  s  =  S )
121, 11oveq12d 6668 . . . . . . . . 9  |-  ( ( s  =  S  /\  r  =  R )  ->  ( r  Cn  s
)  =  ( R  Cn  S ) )
13 rabeq 3192 . . . . . . . . 9  |-  ( ( r  Cn  s )  =  ( R  Cn  S )  ->  { f  e.  ( r  Cn  s )  |  ( f " k ) 
C_  v }  =  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )
1412, 13syl 17 . . . . . . . 8  |-  ( ( s  =  S  /\  r  =  R )  ->  { f  e.  ( r  Cn  s )  |  ( f "
k )  C_  v }  =  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v } )
1510, 11, 14mpt2eq123dv 6717 . . . . . . 7  |-  ( ( s  =  S  /\  r  =  R )  ->  ( k  e.  {
x  e.  ~P U. r  |  ( rt  x
)  e.  Comp } , 
v  e.  s  |->  { f  e.  ( r  Cn  s )  |  ( f " k
)  C_  v }
)  =  ( k  e.  K ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } ) )
16 xkoval.t . . . . . . 7  |-  T  =  ( k  e.  K ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )
1715, 16syl6eqr 2674 . . . . . 6  |-  ( ( s  =  S  /\  r  =  R )  ->  ( k  e.  {
x  e.  ~P U. r  |  ( rt  x
)  e.  Comp } , 
v  e.  s  |->  { f  e.  ( r  Cn  s )  |  ( f " k
)  C_  v }
)  =  T )
1817rneqd 5353 . . . . 5  |-  ( ( s  =  S  /\  r  =  R )  ->  ran  ( k  e. 
{ x  e.  ~P U. r  |  ( rt  x )  e.  Comp } , 
v  e.  s  |->  { f  e.  ( r  Cn  s )  |  ( f " k
)  C_  v }
)  =  ran  T
)
1918fveq2d 6195 . . . 4  |-  ( ( s  =  S  /\  r  =  R )  ->  ( fi `  ran  ( k  e.  {
x  e.  ~P U. r  |  ( rt  x
)  e.  Comp } , 
v  e.  s  |->  { f  e.  ( r  Cn  s )  |  ( f " k
)  C_  v }
) )  =  ( fi `  ran  T
) )
2019fveq2d 6195 . . 3  |-  ( ( s  =  S  /\  r  =  R )  ->  ( topGen `  ( fi ` 
ran  ( k  e. 
{ x  e.  ~P U. r  |  ( rt  x )  e.  Comp } , 
v  e.  s  |->  { f  e.  ( r  Cn  s )  |  ( f " k
)  C_  v }
) ) )  =  ( topGen `  ( fi ` 
ran  T ) ) )
21 df-xko 21366 . . 3  |-  ^ko  =  ( s  e.  Top ,  r  e. 
Top  |->  ( topGen `  ( fi `  ran  ( k  e.  { x  e. 
~P U. r  |  ( rt  x )  e.  Comp } ,  v  e.  s 
|->  { f  e.  ( r  Cn  s )  |  ( f "
k )  C_  v } ) ) ) )
22 fvex 6201 . . 3  |-  ( topGen `  ( fi `  ran  T ) )  e.  _V
2320, 21, 22ovmpt2a 6791 . 2  |-  ( ( S  e.  Top  /\  R  e.  Top )  ->  ( S  ^ko  R )  =  (
topGen `  ( fi `  ran  T ) ) )
2423ancoms 469 1  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( S  ^ko  R )  =  (
topGen `  ( fi `  ran  T ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   ran crn 5115   "cima 5117   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   ficfi 8316   ↾t crest 16081   topGenctg 16098   Topctop 20698    Cn ccn 21028   Compccmp 21189    ^ko cxko 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-xko 21366
This theorem is referenced by:  xkotop  21391  xkoopn  21392  xkouni  21402  xkoccn  21422  xkopt  21458  xkoco1cn  21460  xkoco2cn  21461  xkococn  21463  xkoinjcn  21490
  Copyright terms: Public domain W3C validator