MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmspropd Structured version   Visualization version   Unicode version

Theorem xmspropd 22278
Description: Property deduction for an extended metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
xmspropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
xmspropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
xmspropd.3  |-  ( ph  ->  ( ( dist `  K
)  |`  ( B  X.  B ) )  =  ( ( dist `  L
)  |`  ( B  X.  B ) ) )
xmspropd.4  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
Assertion
Ref Expression
xmspropd  |-  ( ph  ->  ( K  e.  *MetSp  <-> 
L  e.  *MetSp ) )

Proof of Theorem xmspropd
StepHypRef Expression
1 xmspropd.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
2 xmspropd.2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
31, 2eqtr3d 2658 . . . 4  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
4 xmspropd.4 . . . 4  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
53, 4tpspropd 20742 . . 3  |-  ( ph  ->  ( K  e.  TopSp  <->  L  e.  TopSp ) )
6 xmspropd.3 . . . . . . 7  |-  ( ph  ->  ( ( dist `  K
)  |`  ( B  X.  B ) )  =  ( ( dist `  L
)  |`  ( B  X.  B ) ) )
71sqxpeqd 5141 . . . . . . . 8  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  K )  X.  ( Base `  K
) ) )
87reseq2d 5396 . . . . . . 7  |-  ( ph  ->  ( ( dist `  K
)  |`  ( B  X.  B ) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )
96, 8eqtr3d 2658 . . . . . 6  |-  ( ph  ->  ( ( dist `  L
)  |`  ( B  X.  B ) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )
102sqxpeqd 5141 . . . . . . 7  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  L )  X.  ( Base `  L
) ) )
1110reseq2d 5396 . . . . . 6  |-  ( ph  ->  ( ( dist `  L
)  |`  ( B  X.  B ) )  =  ( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) ) )
129, 11eqtr3d 2658 . . . . 5  |-  ( ph  ->  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  =  ( (
dist `  L )  |`  ( ( Base `  L
)  X.  ( Base `  L ) ) ) )
1312fveq2d 6195 . . . 4  |-  ( ph  ->  ( MetOpen `  ( ( dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) ) )  =  ( MetOpen `  ( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) ) ) )
144, 13eqeq12d 2637 . . 3  |-  ( ph  ->  ( ( TopOpen `  K
)  =  ( MetOpen `  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )  <->  ( TopOpen `  L )  =  (
MetOpen `  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) ) ) ) )
155, 14anbi12d 747 . 2  |-  ( ph  ->  ( ( K  e. 
TopSp  /\  ( TopOpen `  K
)  =  ( MetOpen `  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) ) )  <->  ( L  e.  TopSp  /\  ( TopOpen `  L )  =  (
MetOpen `  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) ) ) ) ) )
16 eqid 2622 . . 3  |-  ( TopOpen `  K )  =  (
TopOpen `  K )
17 eqid 2622 . . 3  |-  ( Base `  K )  =  (
Base `  K )
18 eqid 2622 . . 3  |-  ( (
dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  =  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )
1916, 17, 18isxms 22252 . 2  |-  ( K  e.  *MetSp  <->  ( K  e.  TopSp  /\  ( TopOpen `  K )  =  (
MetOpen `  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) ) ) ) )
20 eqid 2622 . . 3  |-  ( TopOpen `  L )  =  (
TopOpen `  L )
21 eqid 2622 . . 3  |-  ( Base `  L )  =  (
Base `  L )
22 eqid 2622 . . 3  |-  ( (
dist `  L )  |`  ( ( Base `  L
)  X.  ( Base `  L ) ) )  =  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) )
2320, 21, 22isxms 22252 . 2  |-  ( L  e.  *MetSp  <->  ( L  e.  TopSp  /\  ( TopOpen `  L )  =  (
MetOpen `  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) ) ) ) )
2415, 19, 233bitr4g 303 1  |-  ( ph  ->  ( K  e.  *MetSp  <-> 
L  e.  *MetSp ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    X. cxp 5112    |` cres 5116   ` cfv 5888   Basecbs 15857   distcds 15950   TopOpenctopn 16082   MetOpencmopn 19736   TopSpctps 20736   *MetSpcxme 22122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-top 20699  df-topon 20716  df-topsp 20737  df-xms 22125
This theorem is referenced by:  mspropd  22279
  Copyright terms: Public domain W3C validator