MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcoid Structured version   Visualization version   Unicode version

Theorem xpcoid 5676
Description: Composition of two square Cartesian products. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Assertion
Ref Expression
xpcoid  |-  ( ( A  X.  A )  o.  ( A  X.  A ) )  =  ( A  X.  A
)

Proof of Theorem xpcoid
StepHypRef Expression
1 co01 5650 . . 3  |-  ( (/)  o.  (/) )  =  (/)
2 id 22 . . . . . 6  |-  ( A  =  (/)  ->  A  =  (/) )
32sqxpeqd 5141 . . . . 5  |-  ( A  =  (/)  ->  ( A  X.  A )  =  ( (/)  X.  (/) ) )
4 0xp 5199 . . . . 5  |-  ( (/)  X.  (/) )  =  (/)
53, 4syl6eq 2672 . . . 4  |-  ( A  =  (/)  ->  ( A  X.  A )  =  (/) )
65, 5coeq12d 5286 . . 3  |-  ( A  =  (/)  ->  ( ( A  X.  A )  o.  ( A  X.  A ) )  =  ( (/)  o.  (/) ) )
71, 6, 53eqtr4a 2682 . 2  |-  ( A  =  (/)  ->  ( ( A  X.  A )  o.  ( A  X.  A ) )  =  ( A  X.  A
) )
8 xpco 5675 . 2  |-  ( A  =/=  (/)  ->  ( ( A  X.  A )  o.  ( A  X.  A
) )  =  ( A  X.  A ) )
97, 8pm2.61ine 2877 1  |-  ( ( A  X.  A )  o.  ( A  X.  A ) )  =  ( A  X.  A
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483   (/)c0 3915    X. cxp 5112    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123
This theorem is referenced by:  utop2nei  22054
  Copyright terms: Public domain W3C validator