MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  co01 Structured version   Visualization version   Unicode version

Theorem co01 5650
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01  |-  ( (/)  o.  A )  =  (/)

Proof of Theorem co01
StepHypRef Expression
1 cnv0 5535 . . . 4  |-  `' (/)  =  (/)
2 cnvco 5308 . . . . 5  |-  `' (
(/)  o.  A )  =  ( `' A  o.  `' (/) )
31coeq2i 5282 . . . . 5  |-  ( `' A  o.  `' (/) )  =  ( `' A  o.  (/) )
4 co02 5649 . . . . 5  |-  ( `' A  o.  (/) )  =  (/)
52, 3, 43eqtri 2648 . . . 4  |-  `' (
(/)  o.  A )  =  (/)
61, 5eqtr4i 2647 . . 3  |-  `' (/)  =  `' ( (/)  o.  A
)
76cnveqi 5297 . 2  |-  `' `' (/)  =  `' `' (
(/)  o.  A )
8 rel0 5243 . . 3  |-  Rel  (/)
9 dfrel2 5583 . . 3  |-  ( Rel  (/) 
<->  `' `' (/)  =  (/) )
108, 9mpbi 220 . 2  |-  `' `' (/)  =  (/)
11 relco 5633 . . 3  |-  Rel  ( (/) 
o.  A )
12 dfrel2 5583 . . 3  |-  ( Rel  ( (/)  o.  A
)  <->  `' `' ( (/)  o.  A
)  =  ( (/)  o.  A ) )
1311, 12mpbi 220 . 2  |-  `' `' ( (/)  o.  A )  =  ( (/)  o.  A
)
147, 10, 133eqtr3ri 2653 1  |-  ( (/)  o.  A )  =  (/)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483   (/)c0 3915   `'ccnv 5113    o. ccom 5118   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123
This theorem is referenced by:  xpcoid  5676  0trrel  13720  gsumval3  18308  utop2nei  22054  cononrel2  37901
  Copyright terms: Public domain W3C validator