MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpiindi Structured version   Visualization version   Unicode version

Theorem xpiindi 5257
Description: Distributive law for Cartesian product over indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
xpiindi  |-  ( A  =/=  (/)  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B ) )
Distinct variable groups:    x, A    x, C
Allowed substitution hint:    B( x)

Proof of Theorem xpiindi
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5227 . . . . . 6  |-  Rel  ( C  X.  B )
21rgenw 2924 . . . . 5  |-  A. x  e.  A  Rel  ( C  X.  B )
3 r19.2z 4060 . . . . 5  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  Rel  ( C  X.  B
) )  ->  E. x  e.  A  Rel  ( C  X.  B ) )
42, 3mpan2 707 . . . 4  |-  ( A  =/=  (/)  ->  E. x  e.  A  Rel  ( C  X.  B ) )
5 reliin 5240 . . . 4  |-  ( E. x  e.  A  Rel  ( C  X.  B
)  ->  Rel  |^|_ x  e.  A  ( C  X.  B ) )
64, 5syl 17 . . 3  |-  ( A  =/=  (/)  ->  Rel  |^|_ x  e.  A  ( C  X.  B ) )
7 relxp 5227 . . 3  |-  Rel  ( C  X.  |^|_ x  e.  A  B )
86, 7jctil 560 . 2  |-  ( A  =/=  (/)  ->  ( Rel  ( C  X.  |^|_ x  e.  A  B )  /\  Rel  |^|_ x  e.  A  ( C  X.  B
) ) )
9 r19.28zv 4066 . . . . . 6  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  (
y  e.  C  /\  z  e.  B )  <->  ( y  e.  C  /\  A. x  e.  A  z  e.  B ) ) )
109bicomd 213 . . . . 5  |-  ( A  =/=  (/)  ->  ( (
y  e.  C  /\  A. x  e.  A  z  e.  B )  <->  A. x  e.  A  ( y  e.  C  /\  z  e.  B ) ) )
11 vex 3203 . . . . . . 7  |-  z  e. 
_V
12 eliin 4525 . . . . . . 7  |-  ( z  e.  _V  ->  (
z  e.  |^|_ x  e.  A  B  <->  A. x  e.  A  z  e.  B ) )
1311, 12ax-mp 5 . . . . . 6  |-  ( z  e.  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  z  e.  B )
1413anbi2i 730 . . . . 5  |-  ( ( y  e.  C  /\  z  e.  |^|_ x  e.  A  B )  <->  ( y  e.  C  /\  A. x  e.  A  z  e.  B ) )
15 opelxp 5146 . . . . . 6  |-  ( <.
y ,  z >.  e.  ( C  X.  B
)  <->  ( y  e.  C  /\  z  e.  B ) )
1615ralbii 2980 . . . . 5  |-  ( A. x  e.  A  <. y ,  z >.  e.  ( C  X.  B )  <->  A. x  e.  A  ( y  e.  C  /\  z  e.  B
) )
1710, 14, 163bitr4g 303 . . . 4  |-  ( A  =/=  (/)  ->  ( (
y  e.  C  /\  z  e.  |^|_ x  e.  A  B )  <->  A. x  e.  A  <. y ,  z >.  e.  ( C  X.  B ) ) )
18 opelxp 5146 . . . 4  |-  ( <.
y ,  z >.  e.  ( C  X.  |^|_ x  e.  A  B )  <-> 
( y  e.  C  /\  z  e.  |^|_ x  e.  A  B )
)
19 opex 4932 . . . . 5  |-  <. y ,  z >.  e.  _V
20 eliin 4525 . . . . 5  |-  ( <.
y ,  z >.  e.  _V  ->  ( <. y ,  z >.  e.  |^|_ x  e.  A  ( C  X.  B )  <->  A. x  e.  A  <. y ,  z >.  e.  ( C  X.  B ) ) )
2119, 20ax-mp 5 . . . 4  |-  ( <.
y ,  z >.  e.  |^|_ x  e.  A  ( C  X.  B
)  <->  A. x  e.  A  <. y ,  z >.  e.  ( C  X.  B
) )
2217, 18, 213bitr4g 303 . . 3  |-  ( A  =/=  (/)  ->  ( <. y ,  z >.  e.  ( C  X.  |^|_ x  e.  A  B )  <->  <.
y ,  z >.  e.  |^|_ x  e.  A  ( C  X.  B
) ) )
2322eqrelrdv2 5219 . 2  |-  ( ( ( Rel  ( C  X.  |^|_ x  e.  A  B )  /\  Rel  |^|_
x  e.  A  ( C  X.  B ) )  /\  A  =/=  (/) )  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B ) )
248, 23mpancom 703 1  |-  ( A  =/=  (/)  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200   (/)c0 3915   <.cop 4183   |^|_ciin 4521    X. cxp 5112   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iin 4523  df-opab 4713  df-xp 5120  df-rel 5121
This theorem is referenced by:  xpriindi  5258
  Copyright terms: Public domain W3C validator