| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpiindi | Structured version Visualization version Unicode version | ||
| Description: Distributive law for Cartesian product over indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| xpiindi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5227 |
. . . . . 6
| |
| 2 | 1 | rgenw 2924 |
. . . . 5
|
| 3 | r19.2z 4060 |
. . . . 5
| |
| 4 | 2, 3 | mpan2 707 |
. . . 4
|
| 5 | reliin 5240 |
. . . 4
| |
| 6 | 4, 5 | syl 17 |
. . 3
|
| 7 | relxp 5227 |
. . 3
| |
| 8 | 6, 7 | jctil 560 |
. 2
|
| 9 | r19.28zv 4066 |
. . . . . 6
| |
| 10 | 9 | bicomd 213 |
. . . . 5
|
| 11 | vex 3203 |
. . . . . . 7
| |
| 12 | eliin 4525 |
. . . . . . 7
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . . 6
|
| 14 | 13 | anbi2i 730 |
. . . . 5
|
| 15 | opelxp 5146 |
. . . . . 6
| |
| 16 | 15 | ralbii 2980 |
. . . . 5
|
| 17 | 10, 14, 16 | 3bitr4g 303 |
. . . 4
|
| 18 | opelxp 5146 |
. . . 4
| |
| 19 | opex 4932 |
. . . . 5
| |
| 20 | eliin 4525 |
. . . . 5
| |
| 21 | 19, 20 | ax-mp 5 |
. . . 4
|
| 22 | 17, 18, 21 | 3bitr4g 303 |
. . 3
|
| 23 | 22 | eqrelrdv2 5219 |
. 2
|
| 24 | 8, 23 | mpancom 703 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-iin 4523 df-opab 4713 df-xp 5120 df-rel 5121 |
| This theorem is referenced by: xpriindi 5258 |
| Copyright terms: Public domain | W3C validator |