MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpriindi Structured version   Visualization version   Unicode version

Theorem xpriindi 5258
Description: Distributive law for Cartesian product over relativized indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
xpriindi  |-  ( C  X.  ( D  i^i  |^|_
x  e.  A  B
) )  =  ( ( C  X.  D
)  i^i  |^|_ x  e.  A  ( C  X.  B ) )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    B( x)    D( x)

Proof of Theorem xpriindi
StepHypRef Expression
1 iineq1 4535 . . . . . . 7  |-  ( A  =  (/)  ->  |^|_ x  e.  A  B  =  |^|_
x  e.  (/)  B )
2 0iin 4578 . . . . . . 7  |-  |^|_ x  e.  (/)  B  =  _V
31, 2syl6eq 2672 . . . . . 6  |-  ( A  =  (/)  ->  |^|_ x  e.  A  B  =  _V )
43ineq2d 3814 . . . . 5  |-  ( A  =  (/)  ->  ( D  i^i  |^|_ x  e.  A  B )  =  ( D  i^i  _V )
)
5 inv1 3970 . . . . 5  |-  ( D  i^i  _V )  =  D
64, 5syl6eq 2672 . . . 4  |-  ( A  =  (/)  ->  ( D  i^i  |^|_ x  e.  A  B )  =  D )
76xpeq2d 5139 . . 3  |-  ( A  =  (/)  ->  ( C  X.  ( D  i^i  |^|_
x  e.  A  B
) )  =  ( C  X.  D ) )
8 iineq1 4535 . . . . . 6  |-  ( A  =  (/)  ->  |^|_ x  e.  A  ( C  X.  B )  =  |^|_ x  e.  (/)  ( C  X.  B ) )
9 0iin 4578 . . . . . 6  |-  |^|_ x  e.  (/)  ( C  X.  B )  =  _V
108, 9syl6eq 2672 . . . . 5  |-  ( A  =  (/)  ->  |^|_ x  e.  A  ( C  X.  B )  =  _V )
1110ineq2d 3814 . . . 4  |-  ( A  =  (/)  ->  ( ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B
) )  =  ( ( C  X.  D
)  i^i  _V )
)
12 inv1 3970 . . . 4  |-  ( ( C  X.  D )  i^i  _V )  =  ( C  X.  D
)
1311, 12syl6eq 2672 . . 3  |-  ( A  =  (/)  ->  ( ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B
) )  =  ( C  X.  D ) )
147, 13eqtr4d 2659 . 2  |-  ( A  =  (/)  ->  ( C  X.  ( D  i^i  |^|_
x  e.  A  B
) )  =  ( ( C  X.  D
)  i^i  |^|_ x  e.  A  ( C  X.  B ) ) )
15 xpindi 5255 . . 3  |-  ( C  X.  ( D  i^i  |^|_
x  e.  A  B
) )  =  ( ( C  X.  D
)  i^i  ( C  X.  |^|_ x  e.  A  B ) )
16 xpiindi 5257 . . . 4  |-  ( A  =/=  (/)  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B ) )
1716ineq2d 3814 . . 3  |-  ( A  =/=  (/)  ->  ( ( C  X.  D )  i^i  ( C  X.  |^|_ x  e.  A  B ) )  =  ( ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B
) ) )
1815, 17syl5eq 2668 . 2  |-  ( A  =/=  (/)  ->  ( C  X.  ( D  i^i  |^|_ x  e.  A  B ) )  =  ( ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B
) ) )
1914, 18pm2.61ine 2877 1  |-  ( C  X.  ( D  i^i  |^|_
x  e.  A  B
) )  =  ( ( C  X.  D
)  i^i  |^|_ x  e.  A  ( C  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    =/= wne 2794   _Vcvv 3200    i^i cin 3573   (/)c0 3915   |^|_ciin 4521    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iin 4523  df-opab 4713  df-xp 5120  df-rel 5121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator